加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MSE 5760代做、代寫C/C++,Java程序
MSE 5760代做、代寫C/C++,Java程序

時間:2025-05-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MSE 5760: Spring 2025 HW 6 (due 05/04/25)
Topic: Autoencoders (AE) and Variational Autoencoders (VAE)
Background:
In this final homework, you will build a deep autoencoder, a convolutional 
autoencoder and a denoising autoencoder to reconstruct images of an isotropic composite 
with different volume fractions of fibers distributed in the matrix. Five different volume 
fraction of fibers are represented in the dataset and these form five different class labels for 
the composites. After the initial practice with AEs and reconstruction of images using latent 
vectors, you will build a VAE to examine the same dataset. After training the VAE (as best 
as you can using the free colab resources to reproduces images), you will use it to generate 
new images by randomly sampling datapoints from the learned probability distribution of 
the data in latent space. Finally, you will build a conditional VAE to not only generate new 
images but generate them for arbitrary volume fractions of fibers in the composite.
The entire dataset containing 10,000 images of composites with five classes of 
volume fractions of fibers was built by Zequn He (currently a Ph.D. student in MEAM in 
Prof. Celia Reina’s group who helped put together this course in Summer 2022 by designing 
all the labs and homework sets). Each image in the dataset shows three fibers of different 
volumes with circular cross sections. Periodic boundary conditions were used to generate 
the images. Hence, in some images, the three fiber particles may appear broken up into
more than three pieces. The total cross sectional area of all the fibers in each image can, 
however, be divided equally among three fibers. Please do not use this dataset for other 
work or share it on data portals without prior permission from Zequn He
(hezequn@seas.upenn.edu).
Due to the large demands on memory and the intricacies of the AE-VAE 
architecture, the results obtained will not be of the same level of accuracy and quality that 
was possible in the previous homework sets. No train/test split is recommended as all 
10,000 images are used for training purposes. You may, however, carry out further analysis 
using train/test split or by tuning the hyperparameters or changing the architecture for 
bonus points. The maximum bonus points awarded for this homework will be 5.
**********************************Please Note****************************
Sample codes for building the AE, VAE and a conditional GAN were provided in 
Lab 6. There is no separate notebook provided for the homework and students will 
have to prepare one. Tensorflow and keras were used in Lab 6 and is recommended 
for this homework. You are welcome to use other libraries such as pytorch.
************************************************************************
1. Model 1: Deep Autoencoder model (20 points)
Import the needed libraries. Load the original dataset from canvas. Check the 
dimensions of each loaded image for consistency. Scale the images.
1.1 Print the class labels and the number of images in each class. Print the shape of 
the input tensor representing images and the shape of the vector representing the 
class labels. (2 points)
1.1. A measure equivalent to the volume fraction of fibers in each composite image is 
the mean pixel value of the image. As the images are of low-resolution, you may 
notice a slight discrepancy in the assigned class value of the image and the 
calculated mean pixel intensity. As the resolution of images increases, there will be 
negligible difference between the assigned class label and the pixel mean of the 
image. Henceforth, we shall use the pixel mean (PM) intensity of the images to be 
the class label. Print a representative sample of ten images showing the volume 
fraction of fibers in the composite along with the PM value of the image. (3 points)
1.2. Build the following deep AE using the latent dimension value = 64.
(a) Let the first layer of the encoder have 256 neurons.
(b) Let the second layer of the encoder have 128 neurons.
(c) Let the last layer of the encoder be the context or latent vector.
(d) Use ReLU for the activation function in all of the above layers.
(e) Build a deep decoder with its input being the context layer of the encoder.
(f) Build two more layers of the decoder with 128 and 256 neurons, respectively. 
These two layers can use the ReLU activation function.
(g) Build the final layer of the decoder such that its output is compatible with the 
reconstruction of the original input shape tensor. Use sigmoid activation for the 
final output layer of the decoder.
(h) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the AE and train it for at least 50 epochs.
(10 points)
1.3. Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (2 points)
1.4. Plot the first ten reconstructed images showing both the original and reconstructed 
images. (3 points)
2. Model 2: Convolutional Autoencoder model (20 points)
2.1 Build the following convolutional AE with the latent dimension = 64
(a) In the first convolution block of the encoder, use 8 filters with 3x3 kernels, 
ReLU activation and zero padding. Apply max pooling layer with a kernel of 
size 2.
(b) In the second convolution block use 16 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(c) In the third layer of the encoder use 32 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(d) Flatten the obtained feature map and then use a Dense layer with ReLU 
activation function to extract the latent variables.
(d) Build the decoder in the reverse order of the encoder filters with the latent 
output layer of the encoder serving as the input to the decoder part.
(e) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the convolutional AE and train it for at least 
50 epochs.
(10 points)
2.2 Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (5 points)
2.3 Plot the first ten reconstructed images showing both the original and reconstructed 
images. (5 points)
3. Model 3: Denoising convolutional Autoencoder model (15 points)
3.1 Add a Gaussian noise to each image. Choose a Gaussian with a mean of zero and a 
small standard deviation, typically ~ 0.2. Plot a sample of five original images with 
noise. (3 points)
3.2 Use the same convolutional autoencoder as in Problem 2 but with noisy images fed 
to the encoder. Train and display all the information as in 2.2 and 2.3.
(12 points)
4. Model 4: Variational Autoencoder model (25 points)
4.1 Set the latent dimension of the VAE be 64. Build a convolutional autoencoder with 
the following architecture. Set the first block to have 32 filters, 3x3 kernels with 
stride = 2 and zero padding.
4.2 Build the second block with 64 filters, 3x3 kernels, stride =2 and zero padding. Use 
ReLU in both blocks. Apply max pooling layer with kernel of size 2x2.
4.3 Build an appropriate output layer of the encoder that captures the latent space 
probability distribution.
4.4 Define the reparametrized mean and variance of this distribution.
4.5 Build the convolutional decoder in reverse order. Apply the same kernels, stride 
and padding as in the encoder above. Choose the output layer of the decoder and 
apply the appropriate activation function.
4.6 Compile and train the model. Monitor the reconstruction loss, Kullback-Liebler 
loss and the total loss. Plot all three quantities for 500 epochs. (10 points)
4.7 Plot the first ten reconstructed images along with their originals. (5 points)
4.8 Generate ten random latent variables from a standard Gaussian with mean zero and 
unit variance. Display the generated images from these random values of the latent 
vector. Comment on the quality of your results and how it may differ from the input 
images. Mention at least one improvement that can be implemented which may 
improve the results. (3+3+4=10 points)
5. Model 5: Conditional Variational Autoencoder model (20 points)
A conditional VAE differs from a VAE by allowing for an extra input 
variable to both the encoder and the decoder as shown below. The extra label could 
be a class label, ‘c’ for each image. This extra label will enable one to infer the 
conditional probability that describes the latent vector conditioned on the class label 
‘c’ of the input. In VAE, using the variational inference principle, one infers the 
Gaussian distribution (by learning its mean and variance) of the latent vector 
representing each input ‘x’. In conditional VAE, one infers the Gaussian 
conditional distribution of the latent vector conditioned on the extra input variable 
‘label’.
For the dataset used in this homework, there are two advantages of the 
conditional VAE compared to the VAE: (i) the conditional VAE provides a cheap
way to validate the model by comparing the pixel mean of the generated images 
with the conditional class label values (pixel mean) in latent space used to generate 
the images. (ii) The trained conditional VAE can be used to generate images of 
composites with arbitrary volume fraction of fibers with sufficient confidence once 
the validation is done satisfactorily.
A conditional VAE. (source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html)
A good explanation of the conditional VAE in addition to the resource cited in the 
figure above is this: https://agustinus.kristia.de/techblog/2016/12/17/conditional vae/.
A conditional GAN (cGAN) toy problem was shown in Lab 6 where the volume 
fraction (replaced by pixel mean for cheaper model validation) was the design 
parameter, and thus, the condition input into the cGAN. In this question, you will 
build a conditional VAE for the same task of generating new images of composites 
as in Problem 4 by randomly choosing points in the latent space. Since each point 
in the latent space represents a conditional Gaussian distribution, it also has a class 
label. Therefore, it becomes possible to calculate the pixel mean of a generated 
image and compare it with the target ‘c’ value of the random point in latent space. 
It is recommended that students familiarize themselves with the code for providing 
the input to the cGAN with class labels and follow similar logic for building the 
conditional VAE. You may also seek help from the TA’s if necessary.
5.1 Create an array that contains both images and labels (the pixel mean of each image). 
Note the label here is the condition and it should be stored in the additional channel 
of each image.
5.2 Use the same structure, activation functions and optimizer as the one used to build 
the VAE in Problem 4. Print the summary of the encoder and decoder blocks 
showing the output shape of each layer along with the number of parameters that 
need to be trained. (5 points)
5.3 Train the cVAE for 500 epochs. Plot the reconstruction loss, Kullback-Liebler loss 
and the total loss. Plot the first ten reconstructed images along with their originals. 
Include values of the pixel mean for both sets of images. (5 points)
5.4 Generate 10 fake conditions (i.e., ten volume fractions represented as pixel means 
evenly spaced within the range 0.1 to 0.4 as used in Lab 6) for image generation. 
Print the shape of the generated latent variable. Print the target volume fraction (or 
pixel mean). Show the shape of the array that combines the latent variables and fake 
conditions. Print the shape of the generated image tensor. (2 points)
5.5 Plot the 10 generated images. For each image show the generated condition (the 
pixel mean of each image generated in 5.4) and the pixel mean calculated from the 
image itself. (3 points)
5.6 Compare the set of generated images from the conditional VAE with the ones 
obtained in Lab 6 using cGAN. Comment on their differences and analyze the 
possible causes for the differences. (5 points)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做 EEB 504B、代寫 java/Python 程序
  • 下一篇:COMP1117B代做、代寫Python程序設計
  • ·代做CAP 4611、代寫C/C++,Java程序
  • ·代做ISYS1001、代寫C++,Java程序
  • ·代做COMP2221、代寫Java程序設計
  • ·代寫MATH3030、代做c/c++,Java程序
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美国产精品| 韩国女主播一区二区三区| 久久不见久久见中文字幕免费 | 久久精品国产大片免费观看| 在线综合亚洲| 久久精品国产亚洲一区二区三区| 日本综合精品一区| 久久动漫亚洲| 国产欧美69| 99riav1国产精品视频| 日韩精品电影在线观看| 天天做夜夜做人人爱精品| 国产午夜精品一区在线观看| 婷婷中文字幕一区| 欧美日本国产| 亚洲一区不卡| 精品国产91久久久久久浪潮蜜月| 在线亚洲人成| 97视频一区| 免费一二一二在线视频| 日韩一区二区三区高清在线观看| 91视频综合| 偷拍亚洲精品| 在线一区av| 老**午夜毛片一区二区三区| 欧美午夜在线播放| 久久这里有精品15一区二区三区| 国产欧美一区二区三区精品酒店| 一区二区网站| 国产成人久久精品一区二区三区| 高清在线一区| 国精品一区二区三区| 日本视频在线一区| 日韩一区二区久久| 激情综合久久| 99久久综合| 综合欧美精品| 国产精品久久久久久影院8一贰佰| 日韩在线观看一区二区三区| 91精品国产一区二区在线观看 | 日韩在线短视频| 97精品视频| 蜜臀av性久久久久蜜臀aⅴ| 日韩美脚连裤袜丝袜在线| 亚洲久久一区二区| 青青草一区二区三区| 久久精品理论片| 久久精品国产免费看久久精品| 免费一二一二在线视频| 日韩网站中文字幕| 米奇777超碰欧美日韩亚洲| 久久激情综合| 欧美中文字幕一区二区| 91精品综合| 欧美日韩一二三四| 国产专区一区| 午夜日韩电影| av自拍一区| 91嫩草精品| 免费福利视频一区| 国产精品一区二区99| 99综合99| 亚洲精华一区二区三区| 希岛爱理av免费一区二区| 精品国产一区二区三区性色av| 日韩三级视频| 国产欧美自拍一区| 99久久综合| 亚洲永久字幕| 美女91在线看| 久久福利在线| 久久久久久网| 日韩欧美伦理| 国产日韩欧美三级| 综合一区二区三区| 日韩成人免费在线| 国产福利一区二区精品秒拍| 久久久久亚洲| 中文高清一区| 国产欧美一区二区三区精品酒店 | 另类综合日韩欧美亚洲| 亚洲欧美在线人成swag| 精品国产一区二| 欧美日韩在线网站| 久久国产88| 日本在线视频一区二区| 欧美日韩亚洲一区| 日产国产欧美视频一区精品| 黄色欧美在线| 一本色道久久综合亚洲精品不卡| 蜜臀av一级做a爰片久久| 午夜精品久久久久久久久久蜜桃| 久久精品国产在热久久| 国产午夜精品一区在线观看| 精品99久久| 蘑菇福利视频一区播放| 日本在线精品| 国产成人视屏| 久久精品导航| 蜜桃视频第一区免费观看| 国产福利亚洲| 日韩电影免费在线观看网站| 国产综合婷婷| 日本免费一区二区六区| 青青草成人在线观看| 亚洲精品不卡在线观看| 一本久久知道综合久久| 欧美激情福利| 综合激情五月婷婷| 亚洲深夜福利| 国产精品久久久久9999高清| 久久国产精品免费一区二区三区| 午夜激情久久| 欧美性www| 精品亚洲二区| 男人天堂欧美日韩| 91精品美女| 精品国产欧美日韩一区二区三区| 免费污视频在线一区| 裸体一区二区| 免播放器亚洲| 日韩精品五月天| 天堂精品在线视频| 麻豆9191精品国产| 影音先锋日韩资源| 999久久久国产精品| 亚洲女同av| 国产精品欧美三级在线观看| 欧美精品一二| 久久久久久久性潮| 99re热精品视频| 久久久久久久尹人综合网亚洲| 亚洲精品一二| 极品美女一区二区三区| 欧美v亚洲v综合v国产v仙踪林| 伊人www22综合色| 黑人巨大精品| 久久视频免费| 老牛影视精品| 久久av网站| 伊伊综合在线| 99精品国产高清一区二区麻豆| av资源新版天堂在线| 欧美美乳视频| 蜜桃视频免费观看一区| 欧美美女在线观看| 蜜臀va亚洲va欧美va天堂| 国产一区二区三区四区五区传媒 | 成人国产一区| 日韩精品免费一区二区三区| 日韩免费小视频| 中文字幕av一区二区三区人| 成人自拍av| 久久久久久免费视频| 一区二区三区福利| 天天射—综合中文网| 欧美日韩a区| 老牛嫩草一区二区三区日本| 亚洲另类春色校园小说| 国产传媒在线| 国产精品巨作av| 久久一区中文字幕| 欧美日韩国产亚洲一区| 国产高清日韩| 蜜桃av一区二区| 极品尤物一区| 免费亚洲一区| 亚洲综合二区| 视频亚洲一区二区| 成人国产精品一区二区免费麻豆| 国产99久久| 最新亚洲国产| 日韩成人综合| 久久社区一区| 亚洲欧美在线人成swag| 麻豆视频在线观看免费网站黄| 国产精品色在线网站| 美女视频一区二区三区| 一本色道久久综合亚洲精品不| 日本精品视频| 国产日本精品| 蜜桃av一区二区三区| 国产毛片久久久| 久久午夜影院| 伊人成综合网站| 欧美高清一区| 亚洲区小说区图片区qvod按摩| 欧美日韩免费观看视频| 性欧美欧美巨大69| 日本精品在线观看| 久久精品男女| 成人影视亚洲图片在线| 色哟哟精品丝袜一区二区| 亚洲最新色图| 亚洲精品一级二级| 亚洲制服av| 一区二区三区四区在线看 | 国产成人精品三级高清久久91| 午夜av不卡| 亚洲一区久久|