加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做CAP 4611、代寫C/C++,Java程序
代做CAP 4611、代寫C/C++,Java程序

時(shí)間:2025-04-28  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Final Exam
Instructor: Amrit Singh Bedi
Instructions
This exam is worth a total of 100 points. Please answer all questions clearly
and concisely. Show all your work and justify your answers.
• For Question 1 and 2, please submit the PDF version of your solution
via webcourses. You can either write it in latex or do it on paper and
submit the scanned version. But if you do it on paper and scan it,
you are responsible for ensuring it is readable and properly scanned.
There will be zero marks if it is not clearly written or scanned.
• The total time to complete the exam is 24 hours and it is due at 4:00
pm EST, Friday (April 25th, 2025). This is a take-home exam. Please
do not use AI like ChatGPT to complete the exam. There are zero
marks if found (believe me, we would know if you use it).
Question 1 50 marks
Context: In supervised learning, understanding the bias-variance tradeoff
is crucial for developing models that generalize well to unseen data.
Problem 1 10 marks
Define the terms bias, variance, and irreducible error in the context of su pervised learning. Explain how each contributes to the total expected error
of a model.
1
Problem 2 20 marks
Derive the bias-variance decomposition of the expected squared error for a
regression problem. That is, show that:
ED,ε[(y − f
ˆ(x))2
] =  Bias[f
ˆ(x)]
2
+ Var[f
ˆ(x)] + σ
2
where f
ˆ(x) is the prediction of the model trained on dataset D, y = f(x)+ε,
and σ
2
is the variance of the noise ε.
Hint: You can start by taking y = f(x) + ε, where E[ε] = 0, and
Var[ε] = σ
2
. Let f
ˆ(x) be a learned function from the training set D. Then
proceed towards the derivation.
Problem 3 10 marks
Consider two models trained on the same dataset:
• Model A: A simple linear regression model.
• Model B: A 10th-degree polynomial regression model.
Discuss, in terms of bias and variance, the expected performance of each
model on training data and unseen test data. Which model is more likely
to overfit, and why?
Problem 4 10 marks
Explain how increasing the size of the training dataset affects the bias and
variance of a model. Provide reasoning for your explanation. (10 marks)
Question 2: Using Transformer Attention 50
marks
Context. Consider a simplified Transformer with a vocabulary of six to kens:
• I (ID 0): embedding  1.0, 0.0

• like (ID 1): embedding  0.0, 1.0

• to (ID 2): embedding  1.0, 1.0

2
• eat (ID 3): embedding  0.5, 0.5

• apples (ID 4): embedding  0.6, 0.4

• bananas (ID 5): embedding  0.4, 0.6

All three projection matrices are the 2 × 2 identity:
WQ = WK = WV = I2.
When predicting the next token, the model uses masked self-attention: the
query comes from the last position, while keys and values come from all
previous tokens. (Note: show step by step calculation for all questions
below)
(a) (10 marks) For the input sequence [I, like, to] (IDs [0, 1, 2]),
compute the query, key and value vectors for each token.
(b) (15 marks) Let Q be the query of the last token and K, V the keys
and values of all three tokens.
• Compute the row vector of raw attention scores qK⊤, where q is
the query of the last token and K is the 3×2 matrix of keys. .
• Scale by √
dk (with dk = 2) and apply softmax to obtain attention
weights.
• Compute the context vector as the weighted sum of the values.
(c) (15 marks) Given the context vector c ∈ R
2
from part (b), com pute the unnormalized score for each vocabulary embedding via c ·
embed(w), i.e. dot-product.
• Apply softmax over these six scores to get a probability distribu tion.
• Which token has the highest probability? [Note: Because the six
embeddings are synthetic and not trained on real text, the token
that receives the highest probability may look ungrammatical in
normal English; this is an artifact of the toy setup.]
(d) (10 marks) Explain why the model selects the token you found in
(c). In your answer, discuss:
• How the attention weights led to that choice.
• Explain why keys/values may include the current token but never
future tokens .
3

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:代做ISYS1001、代寫C++,Java程序
  • 下一篇:FINM7406代做、代寫Java/Python編程
  • ·代做ISYS1001、代寫C++,Java程序
  • ·代做COMP2221、代寫Java程序設(shè)計(jì)
  • ·代寫MATH3030、代做c/c++,Java程序
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設(shè)計(jì)
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設(shè)計(jì)
  • ·MATH1053代做、Python/Java程序設(shè)計(jì)代寫
  • ·CS209A代做、Java程序設(shè)計(jì)代寫
  • ·ITC228編程代寫、代做Java程序語言
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    久久九九国产| 欧美一级网站| 天天精品视频| heyzo欧美激情| 91九色成人| 精品国产第一福利网站| 国产精品av一区二区| 亚洲区小说区图片区qvod按摩 | 天天综合网站| 亚洲美女少妇无套啪啪呻吟| 99久久香蕉| 欧美久久亚洲| 日韩综合在线视频| 丝袜美腿一区| 免费av网站大全久久| 欧美天堂亚洲电影院在线观看| 2020国产精品极品色在线观看| 亚洲国产午夜| 亚洲成人毛片| 鲁鲁在线中文| 久久国产精品久久w女人spa| 91精品啪在线观看国产18| 日韩成人午夜精品| 亚洲综合五月| 欧美aaaaa成人免费观看视频| 成人片免费看| 色狮一区二区三区四区视频| 天天射成人网| 国产主播一区| 久久天天综合| 国产毛片精品| 高潮久久久久久久久久久久久久| 国产欧美日韩精品一区二区三区 | 精品国产精品国产偷麻豆| 日韩有码中文字幕在线| 国产成人视屏| 国产精品嫩模av在线| 一区二区中文| 麻豆91在线观看| 国产欧美日韩综合一区在线播放| av在线不卡精品| 婷婷久久国产对白刺激五月99| 欧美日韩精品在线一区| 999国产精品| 神马日本精品| 在线视频亚洲专区| 美女亚洲一区| 999亚洲国产精| 亚洲欧美高清| 人人精品人人爱| 国产精品x453.com| 91嫩草亚洲精品| 黑人巨大精品欧美一区二区桃花岛| 成人亚洲一区二区| 伊人久久av| 成人精品国产亚洲| 欧美亚洲自偷自偷| 国内自拍一区| 国产探花在线精品| 伊人久久成人| 综合日韩在线| **精品中文字幕一区二区三区| 亚洲五月综合| 怕怕欧美视频免费大全| 精品国产亚洲一区二区三区大结局 | 国产精品一区二区av交换| 国产中文精品久高清在线不| 亚洲精品国产动漫| 国产精品nxnn| 一区在线免费| 91欧美在线| 精品123区| 日本欧美一区二区三区乱码| 国产日产一区| 精品福利网址导航| 欧美~级网站不卡| 老司机免费视频久久| 日韩欧美综合| 日本少妇一区二区| 日韩电影免费在线观看网站| 久久久久久久久99精品大| 香蕉精品视频在线观看| 国产精品99一区二区三| 亚洲精品大全| 亚洲欧洲二区| 国产欧美自拍一区| 好看的日韩av电影| 神马午夜在线视频| 老鸭窝一区二区久久精品| 久久丁香四色| 亚洲欧美综合| 亚洲第一av| 99久久这里有精品| 精品久久国产| 男男视频亚洲欧美| 国产福利一区二区三区在线播放| 中文字幕一区二区三区在线视频 | 精品午夜久久| 热久久一区二区| 青青草97国产精品免费观看| 日本成人精品| 狠狠综合久久| 日本中文字幕一区二区| 亚洲素人在线| 午夜日韩电影| 亚州欧美在线| 亚洲精品福利| 免费视频一区二区| 在线精品一区二区| 欧洲亚洲成人| 高清av不卡| av成人在线网站| 亚洲午夜久久久久久尤物| 国产777精品精品热热热一区二区| 国产一区二区三区久久久久久久久 | eeuss国产一区二区三区四区| 亚洲精品电影| 国内精品伊人| 欧美三级午夜理伦三级中文幕| 亚洲一区日韩在线| 久久永久免费| 欧美日中文字幕| 青青草国产一区二区三区| 日韩成人一区二区| 久久国产精品毛片| www.成人在线.com| 91成人免费| 一区二区激情| 久久久夜夜夜| 97欧美成人| 久久国产毛片| www.一区| 日本久久成人网| 成人国产精品入口免费视频| 欧美成年网站| 9999国产精品| 日韩在线你懂的| 91综合久久| 日韩成人久久| segui88久久综合9999| 先锋影音国产精品| 蜜臀国产一区二区三区在线播放 | 欧美色综合网| 精精国产xxxx视频在线野外| 一区二区三区高清在线观看| 欧美激情理论| 91欧美极品| 999国产精品亚洲77777| 欧美日韩精品一区二区视频| 日韩毛片网站| 欧美jjzz| 中文字幕免费一区二区三区| 国产视频一区三区| 亚洲区小说区图片区qvod按摩 | www.一区| 先锋资源久久| 欧美视频二区欧美影视| 人人狠狠综合久久亚洲| 久久久精品区| 欧美日韩五区| 亚洲精品久久| 国产不卡精品在线| 国产777精品精品热热热一区二区| 精品中文在线| 国产一区高清| 国产亚洲午夜| 日本一区影院| 久久亚洲精品中文字幕| 一区视频在线| 亚洲精品观看| 日韩精品亚洲一区二区三区免费| 最新国产乱人伦偷精品免费网站| 国产免费av一区二区三区| 暖暖成人免费视频| 欧美偷拍综合| 亚洲春色h网| 国产精品久久乐| 在线一区免费观看| japanese色系久久精品| 欧美一区91| 亚洲免费综合| 狼人精品一区二区三区在线| 欧美人成在线| 国内激情视频在线观看| 99热在线成人| 欧美日本成人| 日韩精品欧美精品| 国产福利电影在线播放| 国产综合色产| 久久久国产精品入口麻豆| 久久只有精品| 伊人久久综合一区二区| 女人天堂亚洲aⅴ在线观看| 日本三级亚洲精品| 国产精品a级| 国产极品久久久久久久久波多结野| 尤物在线精品| 欧美wwwwww| 日本亚州欧洲精品不卡| 亚洲欧美综合久久久|