加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH3030、代做c/c++,Java程序
代寫MATH3030、代做c/c++,Java程序

時間:2025-03-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH3030: Coursework, Spring 2025
17/03/2025
• If you are a MATH4068 student, please stop reading and go and find the coursework for
MATH4068. This assessment is for MATH3030 students only.
• This coursework is ASSESSED and is worth 20% of the total module mark. It is split into two questions,
of equal weight.
• Deadline: Coursework should be submitted via the coursework submission area on the Moodle page
by Wednesday 30 April, 10am.
• Do not spend more time on this project than it merits - it is only worth 20% of the module mark.
• Format: Please submit a single pdf document. The easiest way to do this is to use R Markdown or
Quarto in R Studio. Do not submit raw markdown or R code - raw code (i.e. with no output,
plots, analysis etc) will receive a mark of 0.
• As this work is assessed, your submission must be entirely your own work (see the University’s policy
on Academic Misconduct).
• Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark
per working day. Deadline extensions due to Support Plans and Extenuating Circumstances can be
requested according to School and University policies, as applicable to this module. Because of these
policies, solutions (where appropriate) and feedback cannot normally be released earlier than 10 working
days after the main cohort submission deadline.
• Report length: Your solution should not be too long. You should aim to convey the important
details in a way that is easy to follow, but not excessively long. Avoid repetition and long print-outs of
uninteresting numerical output.
• Please post any questions about the coursework on the Moodle discussion boards. This will ensure that
all students receive the same level of support. Please be careful not to ask anything on the discussion
boards that reveals any part of your solution to other students.
• I will be available to discuss the coursework at our Tuesday or Thursday sessions during the semester. I
will not be meeting students 1-1 to discuss the coursework outside of these times.
Plagiarism and Academic Misconduct For all assessed coursework it is important that you submit
your own work. Some information about plagiarism is given on the Moodle webpage.
Grading The two questions carry equal weight, and both will be marked out of 10. You will be assessed on
both the technical content (use of R, appropriate choice of method) and on the presentation and interpretation
of your results.
1
Coursework
The file UN.csv is available on Moodle, and contains data from the United Nations about 141 different
countries from 1952 to 2007. This includes the GDP per capita, the life expectancy, and the population.
Load the data into R, and extract the three different types of measurement using the commands below:
UN <- read.csv('UN.csv')
gdp <- UN[,3:14] # The GDP per capita.
years <- seq(1952, 2007,5)
colnames(gdp) <- years
rownames(gdp) <- UN[,2]
lifeExp <- UN[,15:26] # the life expectancy
colnames(lifeExp) <- years
rownames(lifeExp) <- UN[,2]
popn <- UN[,27:38] # the population size
colnames(popn) <- years
rownames(popn) <- UN[,2]
In this project, you will analyse these data using the methods we have looked at during the module.
Question 1
Exploratory data analysis
Begin by creating some basic exploratory data analysis plots, showing how the three variables (GDP, life
expectancy, population) have changed over the past 70 years. For example, you could show should how the
average life expectancy and GDP per capita for each continent has changed through time. Note that there
are many different things you could try - please pick a small number of plots which you think are most
informative.
Principal component analysis
Carry out principal component analysis of the GDP and life expectancy data. Analyse the two variable types
independently (i.e. do PCA on GDP, then on life-expectancy). Things to consider include whether you use
the sample covariance or correlation matrix, how many principal components you would choose to retain in
your analysis, and interpretation of the leading principal components.
Use your analysis to produce scatter plots of the PC scores for GDP and life expectancy, labelling the names
of the countries and colouring the data points by continent. You can also plot the first PC score for life
expectancy against the first PC score for GDP (again colouring and labelling your plot). Briefly discuss these
plots, explaining what they illustrate for particular countries.
Canonical correlation analysis
Perform CCA using log(GDP) and life expectancy as the two sets of variables. Provide a scatter plot of the
first pair of CC variables, labelling and colouring the points. What do you conclude from your canonical
correlation analysis? What has been the effect of using log(gdp) rather than gdp as used in the PCA?
Multidimensional scaling
Perform multidimensional scaling using the combined dataset of log(GDP), life expectancy, and log(popn),
i.e., using
UN.transformed <- cbind(log(UN[,3:14]), UN[,15:26], log(UN[,27:38]))
Find and plot a 2-dimensional representation of the data. As before, colour each data point by the continent
it is on. Discuss the story told by this plot in comparison with what you have found previously.
2
Question 2
Linear discriminant analysis
Use linear discriminant analysis to train a classifier to predict the continent of each country using gdp,
lifeExp, and popn from 1952-2007. Test the accuracy of your model by randomly splitting the data into test
and training sets, and calculate the predictive accuracy on the test set.
Clustering
Apply a selection of clustering methods to the GDP and life expectancy data. Choose an appropriate number
of clusters using a suitable method, and discuss your results. For example, do different methods find similar
clusters, is there a natural interpretation for the clusters etc? Note that you might want to consider scaling
the data before applying any method.
UN.scaled <- UN[,1:26]
UN.scaled[,3:26] <- scale(UN[,3:26])
Linear regression
Finally, we will look at whether the life expectancy in 2007 for each country can be predicted by a country’s
GDP over the previous 55 years. Build a model to predict the life expectancy of a country in 2007 from its
GDP values (or from log(gdp)). Explain your choice of regression method, and assess its accuracy. You
may want to compare several different regression methods, and assess whether it is better to use the raw gdp
values or log(gdp) as the predictors.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:CSC3050代做、Java/Python編程代寫
  • 下一篇:悠悠分期全國客服電話-悠悠分期24小時人工服務熱線
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • ·ITC228編程代寫、代做Java程序語言
  • ·PROG2004代做、Java程序設計代寫
  • ·代寫Tic-Tac-To: Markov Decision、代做java程序語言
  • ·CP1407代做、代寫c/c++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲精品在线观看91| 欧美日韩视频免费观看| 久久九九精品视频| 日韩欧美网址| 亚洲激精日韩激精欧美精品| 日韩精品一级| 欧美日本中文| 神马久久资源| 国产亚洲激情| 精品国产午夜肉伦伦影院| 久久中文资源| 国产亚洲精品精品国产亚洲综合| 母乳一区在线观看| 欧美一级精品| 91欧美极品| 国产精品手机在线播放| 精品三级在线| 日韩免费高清| 久久亚洲欧美| 欧美大片专区| 国产调教一区二区三区| 亚洲国产一区二区精品专区| 欧美aa一级| 日韩av有码| 激情国产一区| 国产香蕉精品| 日本亚洲三级在线| 亚洲日本中文| 日本vs亚洲vs韩国一区三区 | www.成人在线.com| 福利精品在线| 中文字幕人成乱码在线观看 | www.爱久久| 高清久久精品| 欧美日韩亚洲一区| 天天综合91| 成人福利视频| 亚洲欧美日韩视频二区| 国产精品97| 亚洲激情五月| 樱桃成人精品视频在线播放| 亚洲午夜黄色| 91精品精品| 999精品色在线播放| 精品av一区二区| 亚洲国产视频二区| 9l亚洲国产成人精品一区二三| 亚洲伊人春色| 久久99成人| 日韩高清一区| 精品国产三级| 欧美日韩网站| 精品午夜视频| 粉嫩久久久久久久极品| 国产66精品| 精品三级av| 亚洲婷婷在线| 久久人人99| 国产一区久久| 亚洲精品网址| 黄色欧美成人| 丝袜亚洲另类欧美综合| 蜜臀av亚洲一区中文字幕| 成人精品电影| 日韩成人高清| 久久精品人人| 91久久青草| 久久综合欧美| 91麻豆精品激情在线观看最新| 青青草97国产精品免费观看无弹窗版| 日本不卡免费在线视频| 国产精品久久免费视频| 日韩极品少妇| 精品产国自在拍| 欧美午夜精彩| 丝袜美腿亚洲色图| 外国成人激情视频| 日韩亚洲国产欧美| 欧美婷婷在线| 国产精品久久久久久麻豆一区软件 | 亚洲精品麻豆| 欧美精美视频| 精品无人区麻豆乱码久久久| 亚洲图片在线| 三级影片在线观看欧美日韩一区二区| 国产欧洲在线| 日韩精品免费视频人成| 一区二区三区中文| 精品一区91| 欧美日韩免费观看一区=区三区 | 日韩久久精品网| 日韩国产在线观看| 亚洲人成亚洲精品| 99久久久久国产精品| 一本久道久久综合狠狠爱| www.精品| 亚洲香蕉久久| 精品视频免费在线观看| 亚洲在线国产日韩欧美| 日韩系列欧美系列| 综合色一区二区| 国产精品自在| 久久国产精品久久w女人spa| 美女网站久久| 日韩欧美一区免费| 亚洲精品女人| 精品美女久久| 久久久久久穴| 亚洲精品护士| 亚洲天堂激情| 777午夜精品电影免费看| 国产欧美欧美| 99精品网站| 日韩综合精品| 国产中文字幕一区二区三区| 1024日韩| 亚洲成av在线| 亚洲有吗中文字幕| 国产精品久久久网站| 久久久久久久欧美精品| 日韩精品第二页| 亚洲日本va| а√在线中文在线新版| 免费福利视频一区二区三区| 欧美黄视频在线观看| 激情婷婷综合| 美女视频黄 久久| 精品免费视频| 日韩激情一区| 日韩不卡一区二区三区| 美女久久网站| 国产精品亚洲成在人线| av一级亚洲| 日韩欧美精品综合| 中文字幕视频精品一区二区三区| 美女久久一区| 国产在线日韩精品| 亚洲中字在线| 亚洲欧洲专区| 久久激情综合| 日韩和的一区二在线| 国产欧美在线| 亚洲人成人一区二区三区| 欧美午夜不卡| 国产一区高清| 精品素人av| 成人久久网站| 精品久久网站| 黄在线观看免费网站ktv| 亚洲a在线视频| 国内精品久久久久久久影视简单| 国产一区二区三区站长工具| 亚洲一区视频| 粉嫩一区二区三区在线观看| 国产午夜久久| 欧美激情在线免费| 国产中文在线播放| 久久的色偷偷| 日韩电影免费在线观看| 精品久久久亚洲| 日韩高清欧美激情| 一本久久知道综合久久| 男人的天堂亚洲| 久久99免费视频| 88xx成人免费观看视频库| 日韩在线成人| 免费在线观看一区| 国产精品av久久久久久麻豆网| 国产日韩1区| 欧美日韩国产高清| 亚洲综合福利| 久久亚洲精品中文字幕| 麻豆精品少妇| 亚洲视频二区| 自拍偷拍欧美| 日韩大胆成人| 亚洲国产91| 亚洲一区黄色| 精品国产亚洲一区二区三区| 久久超级碰碰| 国产精品videossex久久发布| 国产精品毛片在线| 色妞ww精品视频7777| 色在线视频观看| 宅男在线一区| 日本午夜精品| 日日夜夜综合| 美女精品在线| 日本精品影院| 国产一区一区| 国产精品99精品一区二区三区∴| 99国产精品视频免费观看一公开 | 欧美日韩亚洲一区| 黄在线观看免费网站ktv| 欧美日韩色图| 国产欧美日韩一区二区三区四区| 日韩图片一区| 精品久久中文| 亚洲欧洲色图| 亚瑟国产精品|