加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产精品日韩精品欧美精品| 麻豆精品精品国产自在97香蕉| 亚洲超碰在线观看| 成人精品高清在线视频| 99av国产精品欲麻豆| 日韩精选在线| 自拍视频亚洲| 日韩高清电影免费| 国产日韩精品视频一区二区三区| 樱桃成人精品视频在线播放| 北条麻妃一区二区三区在线观看| 亚洲国产日本| 色天使综合视频| 性欧美长视频| 精品在线播放| 国产96在线亚洲| 亚欧日韩另类中文欧美| 国产欧美综合一区二区三区| 国产精品毛片久久| 一本久道久久久| 精品99久久| 久久久91麻豆精品国产一区| 伊人久久综合网另类网站| 蜜桃av在线播放| 蜜臀久久99精品久久久画质超高清| 99精品电影| 国产精品高潮呻吟久久久久| 欧美经典影片视频网站| 毛片不卡一区二区| 精品三区视频| 欧美7777| а√在线中文在线新版 | 偷拍亚洲精品| 欧美精品91| 欧美96一区二区免费视频| 国产日韩另类视频一区| 手机亚洲手机国产手机日韩| 一本久道久久综合狠狠爱| 欧洲三级视频| 天堂资源在线亚洲| 蜜桃一区av| 久久99国产精品久久99大师 | 999久久久精品国产| 亚洲精品在线国产| 亚洲一级大片| 日韩视频一区二区三区四区| 国产一区国产二区国产三区| 国产成人手机高清在线观看网站| 亚洲精品社区| 欧美日韩一卡| 一区二区三区四区在线观看国产日韩| 久久精品99久久久| 九九久久国产| 麻豆91在线看| 国产精品一区二区精品| 欧美黄色一级| 日本在线成人| 亚洲一二三区视频| 国内毛片久久| 99精品电影| 亚洲女同中文字幕| 在线亚洲伦理| 色综合天天爱| 青草综合视频| 久久精品人人| 欧美激情 亚洲a∨综合| 99综合久久| 麻豆91精品| 老司机午夜精品| 国产成人视屏| 欧美不卡在线观看| 女同一区二区三区| 欧美精品一区二区久久| 亚洲激情网站| 91中文字幕精品永久在线| 日韩电影在线视频| 国产综合色激情| 一区二区三区国产精华| 日韩在线黄色| 久久综合电影| 人人精品人人爱| 视频二区不卡| 青青青爽久久午夜综合久久午夜 | av日韩一区| 在线播放一区二区精品视频| 久久a爱视频| 99riav国产精品| 成人av观看| 麻豆精品在线播放| 日韩—二三区免费观看av| 粉嫩久久久久久久极品| 成人vr资源| а√天堂中文在线资源8| 久久精品国产精品亚洲毛片| 欧美日一区二区在线观看| 日韩av在线播放中文字幕| 美女视频免费精品| 一区免费在线| 精品成人av| 亚洲一区色图| 成人精品影视| 美国三级日本三级久久99| 日本久久久久| 日韩欧美天堂| 亚洲激情偷拍| 日本中文字幕视频一区| 日韩电影免费在线看| 欧美精品一区二区久久| 日韩欧美字幕| 亚欧日韩另类中文欧美| 国产在线不卡| 蜜桃成人精品| 日韩av在线免费观看不卡| 欧洲乱码伦视频免费| 日本乱码一区二区三区不卡| 综合久久亚洲| 91精品国产91久久久久久黑人| 先锋亚洲精品| 欧美日韩91| 久久久久欧美精品| 日韩成人av电影| 亚洲福利网站| 亚洲一卡久久| 亚洲国产一区二区精品专区| 国产女人18毛片水真多18精品| 日本久久一二三四| 国产精品**亚洲精品| 欧洲激情视频| 国产欧美日韩综合一区在线播放 | 嫩草成人www欧美| 亚洲精品日本| 国产韩日影视精品| 国产精品伦一区二区| av日韩在线播放| 最近高清中文在线字幕在线观看1| 在线精品一区二区| 99国产精品一区二区| 成人久久网站| 欧美日韩导航| 欧美成a人国产精品高清乱码在线观看片在线观看久| 国产精品成人3p一区二区三区| 图片小说视频色综合| 国产精品一页| 在线一级成人| 麻豆成人综合网| 亚洲成人免费| 麻豆久久久久久久| 伊人成综合网| 欧美激情五月| 亚洲激情网址| 国内不卡的一区二区三区中文字幕| 伊人久久成人| 国产免费久久| 久久综合中文| 亚洲电影男人天堂| 激情国产在线| 激情亚洲另类图片区小说区| 日韩欧美网址| 久久久精品网| 久久精品日韩欧美| 好看的亚洲午夜视频在线| 在线观看视频免费一区二区三区| 激情欧美一区| 亚洲欧美网站在线观看| 免播放器亚洲| 久久久久久爱| 国产精品伦一区二区| 在线看片不卡| 亚洲精品合集| 新版的欧美在线视频| 久久网站免费观看| 在线免费观看亚洲| 欧美r级电影| 成人午夜av| 久久久久久毛片免费看| 视频在线观看一区| www国产精品| 日韩精品午夜视频| 亚洲一区二区三区四区五区午夜| 综合亚洲色图| 日韩欧美视频在线播放| 99久久综合| 国产成人视屏| 99只有精品| 国产视频一区三区| 久久久久久爱| 麻豆一区二区三区| 免费成人av在线| 91精品一区二区三区综合| 中文在线播放一区二区| 亚洲伊人av| 91久久国产| 亚洲精品18| 欧美黄色一区| 亚洲天堂免费电影| 亚洲经典一区| 精品国产乱码久久久| 99精品视频在线免费播放| 成人日韩在线| 久久亚洲影院|