加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CIS5200、代做Java/Python程序語言
代寫CIS5200、代做Java/Python程序語言

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CIS5200: Machine Learning Fall 2024
Homework 2
Release Date: October 9, 2024 Due Date: October 18, 2024
• HW2 will count for 10% of the grade. This grade will be split between the written (30 points)
and programming (40 points) parts.
• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.
• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.
• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.
Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
1 Written Questions (30 points)
Problem 1: Gradient Descent (20 points)
Consider a training dataset S = {(x1, y1), . . . ,(xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),
min
w m
1
mX
i=1
log  1 + exp  −yiw
⊤xi
 + R(w)
Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f. Here I is the identity matrix of
the appropriate dimension.
1
1.1 (3 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.
1.2 (3 points) In the case where R(w) = 0, show that the objective is **smooth.
1.3 (4 points) In the case of R(w) = 0, what is the largest learning rate that you can choose such
that the objective is non-increasing at each iteration? Explain your answer.
Hint: The answer is not 1/L for a L-smooth function.
1.4 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0?
In other words, suppose I want to achieve F(wT +1) − F(w∗) ≤ ϵ, express the number of iterations
T that I need to run GD for.
Note: You do not need to reprove the convergence guarantee, just use the guarantee to provide the
rate.
1.5 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,
Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2 minj∈[d] λj and L = 1 + 2 maxj∈[d] λj .
1.6 (4 points) If a function is µ-strongly convex and L-smooth, after T iterations of gradient
descent we have:
Using the above, what is the convergence rate of gradient descent on the regularized logistic re gression problem with the weighted ℓ2 norm penalty? In other words, suppose I want to achieve
∥wT +1 − w∗∥2 ≤ ϵ, express the number of iterations T that I need to run GD.
Note: You do not need to prove the given convergence guarantee, just provide the rate.
Problem 2: MLE for Linear Regression (10 points)
In this question, you are going to derive an alternative justification for linear regression via the
squared loss. In particular, we will show that linear regression via minimizing the squared loss is
equivalent to maximum likelihood estimation (MLE) in the following statistical model.
Assume that for given x, there exists a true linear function parameterized by w so that the label y
is generated randomly as
y = w
⊤x + ϵ
2
where ϵ ∼ N (0, σ2
) is some normally distributed noise with mean 0 and variance σ
2 > 0. In other
words, the labels of your data are equal to some true linear function, plus Gaussian noise around
that line.
2.1 (3 points) Show that the above model implies that the conditional density of y given x is
P p(y|x) = 1.
Hint: Use the density function of the normal distribution, or the fact that adding a constant to a
Gaussian random variable shifts the mean by that constant.
2.2 (2 points) Show that the risk of the predictor f(x) = E[y|x] is σ.
2.3 (3 points) The likelihood for the given data {(x1, y1), . . . ,(xm, ym)} is given by.
Lˆ(w, σ) = p(y1, . . . , ym|x1, . . . , xm) =
Compute the log conditional likelihood, that is, log Lˆ(w, σ).
Hint: Use your expression for p(y | x) from part 2.1.
2.4 (2 points) Show that the maximizer of log Lˆ(w, σ) is the same as the minimizer of the empirical
risk with squared loss, ˆR(w) = m
Hint: Take the derivative of your result from 2.3 and set it equal to zero.
2 Programming Questions (20 points)
Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.
Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MMME4056、代做MATLAB編程設計
  • 下一篇:CSCI 201代做、代寫c/c++,Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一页| 欧美激情第二页| 国产成人福利夜色影视| 欧美大片一区| 日韩在线麻豆| 久久三级毛片| 国产精品不卡| 欧美一区二区三区高清视频| 国产一区二区在线| 久久精品国产99久久6| 视频一区中文字幕| 久久久久午夜电影| 日韩大胆成人| 麻豆国产精品一区二区三区| 黑人精品一区| 99在线观看免费视频精品观看| 欧美视频久久| 亚洲宅男网av| 欧美激情综合| 国产九九精品| 深夜视频一区二区| 成人一区二区| 亚洲综合国产| 2023国产精品久久久精品双| 国产精品22p| 久久精品九色| 亚洲午夜剧场| 麻豆成人久久精品二区三区小说| 视频二区不卡| 亚洲黄色免费av| 日韩精品一二三| 中文日韩在线| 午夜电影亚洲| 免费毛片在线不卡| 99久久激情| 日韩精品免费一区二区三区| 五月亚洲婷婷| 日韩精选在线| 亚洲+变态+欧美+另类+精品| 欧美激情四色| 亚洲色图国产| 麻豆精品视频在线| 国产精品久久久久9999高清| 成人精品国产亚洲| 精品免费av在线| 百度首页设置登录| 日韩中字在线| av资源网在线播放| 欧美成人h版| 暖暖成人免费视频| 亚洲伦乱视频| 成人久久网站| 日日夜夜精品视频免费 | 久久国产精品99国产| 欧美日韩国产传媒| 国产主播一区| 偷偷www综合久久久久久久| 日韩精品首页| 亚洲小说欧美另类婷婷| 欧美69wwwcom| 中文久久精品| 91日韩在线| 精品极品在线| 国产精品久久777777毛茸茸| 影音先锋亚洲电影| 一区二区影视| 亚洲色图美女| 中文字幕一区二区三区日韩精品| 国产精品久久久网站| 99久久亚洲精品| 亚洲黄色在线| 国产黄大片在线观看| 亚洲成人va| 亚洲精品麻豆| 亚洲精品国产精品粉嫩| 亚洲三区欧美一区国产二区| 国产成人aa在线观看网站站| 99精品电影| 午夜在线一区二区| 色天使综合视频| 日日摸夜夜添夜夜添精品视频| 国产精品a级| 玖玖精品一区| 激情另类综合| 石原莉奈在线亚洲二区| 日韩在线视屏| 国产精品扒开腿做爽爽爽软件| 国产精品亚洲四区在线观看| 国产欧美视频在线| 国产一区二区三区自拍| 国产一区二区久久久久| 亚洲主播在线| 男人av在线播放| 欧美日韩一区自拍 | 国产精品麻豆成人av电影艾秋| 99精品久久| 国产精品探花在线观看| 91精品日本| 亚洲一区二区免费看| 精品极品在线| 欧美视频精品全部免费观看| 风间由美中文字幕在线看视频国产欧美| 1024成人| 亚洲精华液一区二区三区| 日韩精品欧美成人高清一区二区| 国产精品探花在线观看| 久久狠狠婷婷| 四季av一区二区凹凸精品| 国产日韩亚洲| 97久久精品| 免费xxxx性欧美18vr| 久久资源在线| 成人在线视频免费观看| 裸体素人女欧美日韩| 欧美在线播放| 国产精品极品| 久久久久久一区二区| 中文字幕一区二区三区在线视频| 久久精品凹凸全集| 色狮一区二区三区四区视频| 欧美日韩ab| 天天射天天综合网| 精精国产xxx在线视频app| 日韩啪啪网站| 宅男噜噜噜66一区二区| 国产日韩一区二区三区在线播放 | 伊人久久婷婷| 亚洲国产1区| 欧美偷窥清纯综合图区| 新版的欧美在线视频| 亚洲人成网77777色在线播放| 国户精品久久久久久久久久久不卡 | 一区二区三区福利| 欧洲亚洲一区二区三区| 另类激情视频| 日韩在线观看一区二区三区| 亚洲一区二区三区四区五区午夜| 亚洲精品日本| 亚洲小说欧美另类婷婷| 99精品国产在热久久下载| 色婷婷综合久久久久久| 成人交换视频| 男人的天堂久久| 久久亚洲资源中文字| 久久久国产亚洲精品| 天堂久久一区| 久久中文亚洲字幕| 美腿丝袜亚洲三区| 亚洲性图久久| 欧美日韩一区二区高清| 日韩一区二区久久| 成人日韩视频| 狂野欧美一区| 久久99精品久久久野外观看| sm久久捆绑调教精品一区| 日韩电影一区二区三区| 黄视频免费在线看| 国产精品视频3p| 日本亚洲欧洲无免费码在线| 激情婷婷久久| 99国内精品久久久久| 蜜桃视频在线一区| 日韩精品中文字幕一区二区| 亚洲男人av| 国产欧美啪啪| 欧美在线免费| 国产一区导航| 日韩精品成人| 欧美天堂在线| 好看的日韩av电影| 久久99国产成人小视频| 九色porny自拍视频在线观看| 欧美激情影院| 亚洲国产三级| 水蜜桃久久夜色精品一区的特点| 日韩 欧美一区二区三区| 密臀av在线播放| 欧美大片一区| 亚洲都市激情| 国产成人精品一区二区三区免费| 今天的高清视频免费播放成人| 亚洲午夜精品一区 二区 三区| 老司机精品视频网站| 精品午夜久久| 国产精品地址| 美女福利一区二区三区| 欧美高清一区| 久久久91麻豆精品国产一区| 日韩免费大片| 久久午夜精品| 欧美日韩亚洲在线观看| 亚洲成在人线免费观看| 国产一区 二区| 99成人在线| 黄色成人美女网站| 精品一区二区三区在线观看视频| 欧美日韩免费观看视频| 国产精品丝袜xxxxxxx| 国产亚洲精品美女久久| 99精品美女视频在线观看热舞|