加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MLE 5217、代寫Python程序設計
代做MLE 5217、代寫Python程序設計

時間:2024-10-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Dept. of Materials Science & Engineering NUS
MLE 5217 : Take-Home Assignments
Objectives
Based on the chemical composition of materials build a classiffcation model to distinguish metals and non-metals
(Model 1), and then build a regression model to predict the bandgap of non-metallic compounds (Model 2).
Please use a separate jupyter notebook for each of the models.
Data
The data contains the chemical formula and energy band gaps (in eV) of experimentally measured compounds.
These measurements have been obtained using a number of techniques such as diffuse reffectance, resistivity
measurements, surface photovoltage, photoconduction, and UV-vis measurements. Therefore a given compound
may have more than one measurement value.
Tasks
Model I (30 marks)
Dataset: Classiffcation data.csv
Fit a Support Vector Classiffcation model to separate metals from non-metals in the data. Ensure that you:
• Follow the usual machine learning process.
• Use a suitable composition based feature vector to vectorize the chemical compounds.
• You may use your judgement on how to differentiate between metals & non-metals. As a guide, two possible
options are given below.
Option 1 : for metals Eg = 0, and Non-metals Eg > 0
Option 2: for metals Eg ≤ 0.5, for non-metals Eg > 0.5
• Use suitable metrics to quantify the performance of the classiffer.
• For added advantage you may optimize the hyper-parameters of the Support Vector Classiffer. Note: Optimization
 algorithms can require high processing power, therefore may cause your computer to freeze (Ensure
you have saved all your work before you run such codes). In such a case you may either do a manual
optimization or leave the code without execution.
• Comment on the overall performance of the model.
Model II (30 marks)
Dataset: Regression data.csv
Fit a Regression Equation to the non-metals to predict the bandgap energies based on their chemical composition
• Use a suitable composition based feature vector to vectorize the chemical compounds. You may try multiple
feature vectors and analyse the outcomes.
• You may experiment with different models for regression analysis if required.
• Comment on the overall performance of the model and suggest any short-comings or potential improvements.
September 2024Important : Comments
• Write clear comments in the code so that a user can follow the logic.
• In instances where you have made decisions, justify them.
• In instances where you may have decided to follow a different analysis path (than what is outlined in the
tasks), explain your thinking in the comments.
• Acknowledge (if any) references used at the bottom of the notebook.
Submission
• Ensure that each of the cells of code in the ffnal Jupyter notebooks have been Run for output (Except for
the hyper-parameter optimization if any).
• The two models (I and II) have been entered in two separate notebooks.
• Name the ffles by your name as ”YourName 1.ipynb” and ”YourName 2.ipynb”
• It is your responsibility to Ensure that the correct ffles are being submitted, and the ffle extensions
are in the correct format (.ipynb).
• Submission will be via Canvas, and late submissions will be penalized.
Evaluation
The primary emphasis will be on the depth and thoroughness of your approach to the problem. Key areas of focus
will include:
* Data Exploration: Demonstrating a thorough investigation of the data, exploring different analytical
possibilities, and thoughtfully selecting the best course of action.
* Implementation: Translating your chosen approach into clean and efffcient code.
* Machine Learning Process: Executing the machine learning process correctly and methodically, ensuring
proper data handling, model selection, and evaluation.
* Clarity of Explanation: Providing clear explanations of each step, with logical reasoning for the decisions made.
*Critical Analysis: Identifying any limitations of the approach, suggesting potential improvements, and making
relevant statistical inferences based on the results.
================================================================


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:代寫ISAD1000、代做Java/Python程序設計
  • 下一篇:代寫Battleship 、代做Game 設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品国产一区二| 日韩在线欧美| 国产在线播放精品| 欧美激情四色| 日韩电影二区| 亚洲激情偷拍| 精品视频亚洲| 亚洲免费毛片| 国产欧美日韩综合一区在线播放| 综合久久99| 色综合天天色| 日韩中文欧美在线| 欧美伦理影院| 精品亚洲免a| 久久99成人| 成人乱码手机视频| 麻豆91在线看| 日韩激情图片| 欧美a级成人淫片免费看| 亚洲精品2区| 久久精品综合| 日韩高清在线观看一区二区| 91精品一久久香蕉国产线看观看 | 成人自拍视频| 欧美亚洲福利| 欧美日韩免费看片| 欧美hd在线| 日韩午夜在线| 精品欧美激情在线观看| 久久久五月天| 色88888久久久久久影院| 在线播放一区二区精品视频| 亚洲亚洲免费| 95精品视频| 亚洲人metart人体| 亚洲精品三级| 综合一区二区三区| 欧美日韩综合| av在线播放一区二区| 日本欧美韩国一区三区| 日本特黄久久久高潮 | 亚洲91在线| 日韩一区二区三区在线免费观看| 老牛国内精品亚洲成av人片| eeuss鲁片一区二区三区| 亚洲天堂中文字幕在线观看| 亚洲图色一区二区三区| 日韩三级视频| 欧美成年网站| 国产精品xxxav免费视频| 国产精品久久久久久久久久白浆| 欧美aa在线视频| 日韩综合小视频| 国产精品a久久久久| 亚洲一区二区| 日韩影视高清在线观看| 中文字幕亚洲在线观看 | 国产亚洲一区| 日韩va欧美va亚洲va久久| 日韩电影在线观看完整免费观看| 国产激情久久| 日本不卡一二三区黄网| 日本伊人精品一区二区三区观看方式 | 国产污视频在线播放| 中文字幕在线免费观看视频| 中文字幕在线看片| 久久亚洲精品人成综合网| 免费在线观看成人av| 亚洲另类视频| 国产精品亚洲人成在99www| 日韩二区三区四区| 精品国产精品国产偷麻豆| 欧美xxxx在线| 亚洲一级在线| 亚洲深夜视频| 日本不卡123| 国产亚洲一区| 久久精品国产亚洲5555| 亚洲电影在线一区二区三区| 91久久在线| 漫画在线观看av| 久久一区国产| 国产一区二区三区电影在线观看| 美腿丝袜亚洲三区| 国产一区二区三区视频在线| 日韩精品丝袜美腿| 台湾佬综合网| 久久先锋影音| 福利视频一区| 亚洲天堂日韩在线| 久久激情一区| 免费观看30秒视频久久| 亚洲国产天堂| 亚州av日韩av| 久久成人综合| 93在线视频精品免费观看| 色999韩欧美国产综合俺来也| 欧美gv在线观看| 日本欧美大码aⅴ在线播放| 日本一区二区乱| 欧美综合另类| 欧美一级鲁丝片| 欧美极品一区二区三区| 在线综合色站| 另类亚洲自拍| 日本不卡的三区四区五区| 欧美顶级毛片在线播放| 老妇喷水一区二区三区| 久久精品人人做人人爽电影蜜月| 快播电影网址老女人久久| 国产精区一区二区| 久久在线电影| 欧美日韩免费观看视频| 国产精一区二区| 欧美日韩麻豆| 另类激情视频| 亚洲精品白浆高清| 在线亚洲一区| 亚洲乱码视频| 欧美成人中文| 日韩亚洲国产免费| 国产精品22p| 极品av在线| 日韩二区三区四区| 一本色道久久综合| 亚洲人成高清| 99久久婷婷| 粉嫩av一区二区三区四区五区| 青草国产精品久久久久久| 国产精品极品| 女人高潮被爽到呻吟在线观看| 丝袜美腿诱惑一区二区三区| 日本中文字幕在线一区| 午夜在线a亚洲v天堂网2018| 亚洲精品孕妇| 亚洲精品中文字幕乱码| 一区二区日韩免费看| 久久久久午夜电影| 福利一区二区| 久久久蜜桃一区二区人| 99久久婷婷国产综合精品首页| 麻豆免费精品视频| 国内亚洲精品| 欧美亚洲自偷自偷| 伊人青青综合网| 中文字幕日韩欧美精品高清在线| 亚洲系列另类av| 久久久久久一区二区| 国产精品一区二区99| 欧美gay男男猛男无套| 日韩成人免费电影| 欧美freesex黑人又粗又大| 成人午夜网址| 久久精品国产77777蜜臀| 偷偷www综合久久久久久久| 国内精品久久久久久久97牛牛 | 亚洲伦乱视频| 久久激情婷婷| 日本不卡视频在线| 久久成人亚洲| 日本欧美高清| 日韩经典一区| 国产真实久久| 国产一区二区观看| 日韩电影在线视频| 欧美日韩中文一区二区| 欧美日韩一卡| 国产福利片在线观看| 国产亚洲精品美女久久| 麻豆精品新av中文字幕| 99视频一区| **爰片久久毛片| 国产精品麻豆成人av电影艾秋| 偷拍自拍一区| 日韩成人综合| 欧美成人亚洲| 日韩电影在线看| 色综合视频一区二区三区44| 午夜久久影院| www.国产精品一区| 亚洲精品一二| 日韩专区精品| 亚洲国产一区二区三区在线播放 | 老司机午夜精品视频在线观看| 欧美一区视频| 免费观看30秒视频久久| 林ゆな中文字幕一区二区| 97精品资源在线观看| 91精品影视| av成人激情| 精品国产一区二区三区久久久蜜臀 | 久久精品亚洲人成影院 | 日本成人在线一区| 国产社区精品视频| 亚洲成人三区| 国产乱论精品| 日韩激情一二三区| 亚洲日本国产| 亚洲精品tv| 91麻豆精品国产91久久久平台|