加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:STAT4602代寫、代做Java/Python編程
  • 下一篇:代做 ECE391、代寫 C/C++設(shè)計(jì)編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    欧美特黄一级大片| 欧美日韩午夜电影网| 一区在线播放| 日韩精选在线| 肉肉av福利一精品导航| 鲁大师成人一区二区三区 | 免费精品一区| 麻豆精品国产传媒mv男同| 蜜桃av噜噜一区| 久久网站免费观看| 日韩伦理一区二区三区| 久久一区精品| 日韩电影一区| 久热精品在线| 激情欧美国产欧美| 免费观看性欧美大片无片| 日韩精品亚洲专区| 日日夜夜天天综合| 久久先锋影音| 仙踪林久久久久久久999| 999久久精品| 亚洲都市激情| 麻豆91在线播放| 在线一区视频观看| www在线观看黄色| 国产亚洲精品久久久久婷婷瑜伽| 久久久久一区| 欧美私人啪啪vps| 亚洲8888| 久久午夜影院| 肉色丝袜一区二区| 国产精品亚洲成在人线| 黄色在线观看www| 日韩视频中文| 亚州av乱码久久精品蜜桃| 久久久久国产精品一区二区| 久久在线观看| 亚洲尤物av| 国产在线日韩精品| 高清久久一区| 成人在线啊v| 亚洲影视一区二区三区| 日本va欧美va欧美va精品| 国产美女久久| 婷婷久久免费视频| 日韩高清中文字幕一区二区| 欧美aa视频| 97精品国产| 欧美xxxxx视频| 日韩av大片| cao在线视频| 樱桃视频成人在线观看| zzzwww在线看片免费| 国产剧情av在线播放| 成人三级高清视频在线看| 91综合久久| 久久影院午夜精品| 丝袜诱惑一区二区| 亚洲综合在线电影| 韩国女主播一区二区| 日本一区免费网站| 国产成人久久精品麻豆二区| 国产一区二区三区国产精品| 日韩黄色三级在线观看| 久久精品二区亚洲w码| 日本不卡视频在线| 欧美日韩一卡| 国产精品一区2区3区| 亚洲婷婷伊人| 亚洲精品福利| 久久狠狠婷婷| 欧美va亚洲va日韩∨a综合色| 免费观看久久av| 99国产成+人+综合+亚洲欧美| 先锋影音久久久| 蜜桃91丨九色丨蝌蚪91桃色 | 9l亚洲国产成人精品一区二三| 亚洲精品福利| 在线日韩欧美| 模特精品在线| 中文在线аv在线| 国产精品第一| 亚洲在线久久| 91成人午夜| 久久社区一区| 视频一区二区中文字幕| 精品丝袜在线| 欧美日韩一区二区国产| 精品国产一区二区三区性色av | 日本欧美大码aⅴ在线播放| 欧美高清hd| 国产精品任我爽爆在线播放| 不卡一区综合视频| 国产精品x453.com| 精品国产黄a∨片高清在线| 国产精品videosex极品| 日韩精品亚洲专区在线观看| 99国产精品一区二区| 美女黄色成人网| 精品欧美日韩精品| 一区二区三区网站| 黄色成人美女网站| 日韩午夜av在线| 精品视频在线一区二区在线| 91精品麻豆| 精品精品国产三级a∨在线| 香蕉久久夜色精品国产| 久久精品97| 亚洲宅男一区| 尤物tv在线精品| 美女一区网站| 亚洲最新色图| 久久精品高清| 日韩伦理一区| 久久93精品国产91久久综合| 神马香蕉久久| 九色porny自拍视频在线观看| 日本va欧美va精品发布| 精品国产一区二区三区av片| 国产精品美女久久久| 日韩一区二区三区四区五区| 日韩电影在线一区| 亚洲免费播放| 欧美一级视频| 欧美wwwwww| 涩涩av在线| 日韩经典一区二区| 樱桃成人精品视频在线播放| 精品三区视频| 一区二区三区视频播放| 亚洲女优在线| 欧美日一区二区在线观看| 精品久久ai| 日韩视频网站在线观看| 亚洲制服一区| 午夜一区不卡| av在线亚洲一区| 狠狠综合久久| 日本美女视频一区二区| 国产一区二区三区四区三区四| 亚洲天堂一区二区| 欧美2区3区4区| h片在线观看视频免费| 亚洲欧美校园春色| 欧美综合二区| 国产伦精品一区二区三区视频 | 手机在线一区二区三区| 欧美日韩黄网站| 麻豆亚洲精品| 国产精品一区高清| 日韩精品一二区| 久久av资源| 色欧美自拍视频| 日韩激情一二三区| 97色伦图片97综合影院| 日韩高清一区| 怡红院成人在线| 精品无人区一区二区| 国产成人77亚洲精品www| 成人久久久久| 久久字幕精品一区| 亚洲电影在线一区二区三区| 日本少妇一区二区| 在线亚洲观看| 亚洲综合图色| 亚洲欧洲美洲av| 精品国产欧美日韩| 青青青爽久久午夜综合久久午夜| 国产中文一区| 国产精品亚洲四区在线观看| 免费一级欧美片在线观看| 精品国产三级| 国产综合色在线观看| 日韩电影免费一区| 国产一区二区精品久| 久久久久久网| 国产精品17p| 久久精品一区二区三区中文字幕| 亚洲性视频h| av成人在线网站| 丁香六月综合| 久久日文中文字幕乱码| 一区二区三区在线观看免费| 老司机精品导航| 欧美涩涩视频| 日本va欧美va瓶| 9999国产精品| 亚洲高清激情| 国产亚洲一区二区三区啪| 日韩久久视频| 黄色工厂这里只有精品| 久久99成人| 日本不卡免费在线视频| 国产网站在线| 国产一区二区三区自拍| 日韩经典一区二区| 免费在线成人| 国产理论在线| 欧美理论电影大全| 精品国模一区二区三区欧美|