加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS1010S、代做Python編程語言
  • 下一篇:STAT4602代寫、代做Java/Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚欧日韩另类中文欧美| 精品一区二区男人吃奶| 一本大道色婷婷在线| 久久精品国产清高在天天线| 亚洲破处大片| 日韩欧美午夜| 久久国产成人| 日韩精品欧美| 日韩电影免费一区| 日日骚欧美日韩| 国产伦子伦对白在线播放观看| 天天综合91| 午夜在线精品偷拍| 99视频精品视频高清免费| 国产精品日韩精品在线播放| 黄毛片在线观看| 欧美在线资源| 精品视频在线你懂得| 亚洲警察之高压线| 日本成人在线视频网站| 日韩综合精品| 国产精品久久久久久久久妇女| 在线高清欧美| 日韩精品第二页| 国产高潮在线| 天堂av在线一区| 亚洲精品中文字幕乱码| 欧美综合精品| 国产精品115| 香蕉免费一区二区三区在线观看| 精品日韩视频| 国产理论在线| 免费观看在线综合色| 最新日韩在线| 欧美a级片一区| 激情久久综合| 欧美日中文字幕| 精品中文视频| 久久免费精品| 日本天堂一区| 日韩欧美美女在线观看| 国产一区二区三区四区五区| 亚洲精品影院在线观看| 日本欧美韩国一区三区| 麻豆国产精品官网| 久久精品五月| 久久在线精品| 久久中文精品| 日韩福利视频网| 麻豆成人综合网| 麻豆精品视频在线观看视频| 日韩国产欧美在线视频| 日韩精品视频网| 麻豆久久一区二区| 欧美日本二区| 国产成人ay| 亚洲春色h网| 日韩精品成人| 国产 日韩 欧美 综合 一区| 好吊妞视频这里有精品| 日本电影一区二区| 林ゆな中文字幕一区二区| 精品视频国产| 国产一区清纯| 午夜一区在线| 韩国成人二区| 成人午夜一级| 欧美日韩亚洲三区| 国产精品白丝久久av网站| 色综合综合网| 红杏aⅴ成人免费视频| 欧美日韩一区二区综合| 激情五月综合| 视频一区二区欧美| 欧美gv在线| 国产欧美日韩亚洲一区二区三区| 色琪琪久久se色| 黄视频网站在线观看| 欧美国产日韩电影| 99精品欧美| av日韩在线免费观看| 日产欧产美韩系列久久99| 国产精品乱战久久久| 亚洲高清久久| 热久久免费视频| 日韩高清不卡| 欧美区亚洲区| 热久久天天拍国产| 91久久久久| 日韩激情一区| 欧美a级一区二区| 五月激激激综合网色播| 另类在线视频| 日韩精品一卡二卡三卡四卡无卡| 亚洲激情国产| 伊人久久综合一区二区| 一区二区激情| 警花av一区二区三区| 欧洲三级视频| 偷拍视频一区二区三区| 欧美日韩一卡| 久久久久亚洲| 国产精品久久久乱弄| 欧美一级视频| 伊人精品综合| 中文亚洲字幕| 欧美在线首页| 国产精品一区二区三区美女| 午夜亚洲性色视频| 国产一区二区三区的电影| 国产午夜一区| 欧美中文字幕一区二区| www.51av欧美视频| 欧美黄色一区| 欧美最新另类人妖| 91超碰碰碰碰久久久久久综合| 亚洲播播91| 亚洲国产精品嫩草影院久久av| av在线亚洲一区| 成人羞羞视频播放网站| 中文字幕高清在线播放| 综合国产在线| 免费观看久久av| 精品免费av一区二区三区| 久久93精品国产91久久综合| 黄色欧美成人| 欧美在线高清| 久久精品国产大片免费观看| 亚洲伊人av| 18国产精品| 国产污视频在线播放| 国产传媒欧美日韩成人精品大片| 午夜电影一区| 免费在线观看一区二区三区| 国产日产高清欧美一区二区三区| 亚洲乱亚洲高清| 91精品国偷自产在线电影| 超碰高清在线| 日韩av网站免费在线| 久久不射网站| 欧美猛男同性videos| 午夜久久影院| 欧美精品成人| 一本久道久久综合婷婷鲸鱼| 亚洲国产精品第一区二区| 欧美色图一区| 另类的小说在线视频另类成人小视频在线 | 在线亚洲人成| 精品国产一区二区三区2021| 国产精品日韩| 亚洲美女久久| 高清久久一区| 免费精品一区| 色网在线免费观看| 亚洲无线观看| 51一区二区三区| 久久亚洲国产| 久久中文字幕导航| 国产午夜精品一区二区三区欧美| 在线综合欧美| 国产麻豆精品久久| 媚黑女一区二区| 日韩激情av在线| 成人日韩在线观看| 91蜜桃臀久久一区二区| 少妇精品视频一区二区免费看| 久久婷婷国产| 久久大逼视频| 激情视频亚洲| 精品久久在线| 狠狠爱www人成狠狠爱综合网| 日本а中文在线天堂| 一区视频网站| 欧美a一级片| 国产一级一区二区| 在线一区二区三区视频| 久久国产三级精品| 国产精品美女久久久| 日韩有码一区| 国产69精品久久| 母乳一区在线观看| 伊人www22综合色| 国产日韩高清一区二区三区在线| 久久久91麻豆精品国产一区| www.26天天久久天堂| 亚洲电影成人| 久久wwww| 麻豆国产91在线播放| 麻豆mv在线观看| 在线视频观看日韩| 欧美美女在线| 亚洲视频二区| h片在线观看视频免费免费| 欧美 日韩 国产一区二区在线视频| 成人在线观看免费视频| 91久久亚洲| 牲欧美videos精品| 久久99视频| 亚洲视频二区| 色一区二区三区四区|