加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 MSE 609、代做 Java,C++設計程序
代寫 MSE 609、代做 Java,C++設計程序

時間:2024-11-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Instructions:
MSE 609 Quantitative Data Analysis Midterm 3
1. Prepare your answers using Jupyter Notebook or R Markdown, and submit as a PDF or HTML document. Ensure your submission is clear, organized, and well-formatted.
2. Use complete sentences when explaining, commenting, or discussing. Provide thorough answers within the context of the problem for full credit.
3. Show all work and reasoning in your submission. Your grade will depend on the clarity, detail, and correctness of your answers.
4. The exam is open book and open notes. You may use textbooks, course notes, and approved coding tools (e.g., Jupyter Notebook or R Studio). However, using generative AI tools (e.g., large language models) is not permitted.
5. Total points = 100.
6. The exam duration is 1 week. Submit your completed exam by Thursday, November 14, at 11:59 PM. Late submissions will not be accepted.
7. Upload your submission to Crowdmark in PDF or HTML format.
Good Luck!
Problem 1 2 3 Total Max 42 40 18 100
   Points
 1

1. (42 points total) The data file question1.csv contains information about the economies of 366 metropolitan areas (MSAs) in the United States for the year 2006. The dataset includes variables such as the population, the total value of all goods and services produced for sale in the city that year per person (“per capita gross metropolitan product”, pcgmp), and the share of economic output coming from four selected industries.
a. (1 points) Load the data file and confirm that it contains 366 rows and 7 columns. Explain why there are seven columns when only six variables are described in the dataset.
b. (1 points) Compute summary statistics for the six numerical columns.
c. (4 points) Create univariate exploratory data analysis (EDA) plots for population and per capita GMP. Use histograms and boxplots, and describe the distributions of these variables.
d. (4 points) Generate a bivariate EDA plot showing per capita GMP as a function of population. Describe the relationship observed in the plot.
e. (3 points) Using only basic functions like mean, var, cov, sum, and arithmetic operations, cal- culate the slope and intercept of the least-squares regression line for predicting per capita GMP based on population.
f. (3 points) Compare the slope and intercept from your calculations to those returned by the lm function in R. Are they the same? Should they be?
g. (3 points) Add both regression lines to the bivariate EDA plot. Comment on the fit and whether the assumptions of the simple linear regression model appear to hold. Are there areas where the fit seems particularly good or poor?
h. (3 points) Identify Pittsburgh in the dataset. Report its population, per capita GMP, the per capita GMP predicted by your model, and the residual for Pittsburgh.
i. (2 points) Calculate the mean squared error (MSE) of the regression model. That is, compute n1 􏰀ni=1 e2i , where ei = Yi − Yˆi is the residual.
j. (2 points) Discuss whether the residual for Pittsburgh is large, small, or typical relative to the MSE.
2

k. (4 points) Create a plot of residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
l. (3 points) Create a plot of squared residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
m. (3 points) Carefully interpret the estimated slope in the context of the actual variables involved in this problem, rather than using abstract terms like ”predictor variable” or ”X”.
n. (3 points) Using the model, predict the per capita GMP for a city with a population that is 105 higher than Pittsburgh’s.
o. (3 points) Discuss what the model predicts would happen to Pittsburgh’s per capita GMP if a policy intervention were to increase its population by 105 people.
3

2. (40 points total) In real-world data analysis, the process goes beyond simply generating a model and reporting the results. It’s essential to accurately frame the problem, select appropriate analytical methods, interpret the findings, and communicate them in a way that is accessible to an audience that may not be familiar with advanced statistical methods.
Research Scenario: Coral shells, known scientifically as Lithoria crusta, are marine mollusks that inhabit rocky coastal areas. Their meat is highly valued as a delicacy, eaten raw or cooked in many cultures. Estimating the age of Lithoria crusta, however, is difficult since their shell size is influenced not only by age but also by environmental factors, such as food supply. The traditional method for age estimation involves applying stain to a shell sample and counting rings under a microscope. A team of researchers is exploring whether certain physical characteristics of Lithoria crusta, particularly their height, might serve as indicators of age. They propose using a simple linear regression model with normally distributed errors to examine the association between shell height and age, positing that taller shells are generally older. The dataset for this research is available at question2.csv.
a. (3 points) Load the data. Describe the research hypothesis.
b. (4 points) Examine the two variables individually (univariate). Find summary measures for each (mean, variance, range, etc.). Graphically display each and describe your graphs. What is the unit of height?
c. (4 points) Generate a labeled scatterplot of the data. Describe interesting features or trends you observe.
d. (2 points) Fit a simple linear regression to the data, predicting the number of rings using the height of the Lithoria crusta.
e. (4 points) Generate a labeled scatterplot that displays the data and the estimated regression function line (you may add this to the previous scatterplot). Describe the fit of the line.
f. (5 points) Perform diagnostics to assess whether the model assumptions are met. If not, appro- priately transform the height and/or number of rings and re-fit your model. Justify your decisions and re-check your diagnostics.
g. (4 points) Interpret your final parameter estimates in context. Provide 95% confidence intervals for β0 and β1, and interpret these in the context of the problem.
h. (3 points) Determine whether there is a statistically significant relationship between the height
4

and the number of rings (and hence, the age) of Lithoria crusta. Explain your findings in the context of the problem.
i. (4 points) Find the point estimate and the 95% confidence interval for the average number of rings for a Lithoria crusta with a height of 0.128 (in the same unit as other observations of height). Interpret this in the context of the problem.
j. (4 points) We are interested in predicting the number of rings for a Lithoria crusta with a height of 0.1** (in the same unit as other observations of height). Find the predicted value and a 99% prediction interval.
k. (3 points) What are your conclusions? Identify a key finding and discuss its validity. Can you come up with any reasons for what you observe? Do you have any suggestions or recommen- dations for the researchers? How could this analysis be improved? (Provide 6–8 sentences in total.)
5

3. (18 points total) Load the stackloss data:
  data(stackloss)
  names(stackloss)
  help(stackloss)
a. (3 points) Plot the data and describe any noticeable patterns or trends.
b. (5 points) Fit a multiple regression model to predict stack loss from the three other variables. The model is
Y =β0 +β1X1 +β2X2 +β3X3 +ε
where Y is stack loss, X1 is airflow, X2 is water temperature, and X3 is acid concentration. Sum- marize the results of the regression analysis, including the estimated coefficients and their interpre- tation.
c. (3 points) Construct ** percent confidence intervals for the coefficients of the linear regression model. Interpret these intervals in the context of the problem.
d. (3 points) Construct a 99 percent prediction interval for a new observation when Airflow = 58, Water temperature = 20, and Acid = 86. Interpret the prediction interval.
e. (4 points) Test the null hypothesis H0 : β3 = 0. What is the p-value? Based on a significance level of α = 0.10, what is your conclusion? Explain your reasoning.
6

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CP3405、代做 Python/C++語言編程
  • 下一篇:代做 CS 6613、代寫 c++,python 程序語言
  • ·代寫 CS 336、代做 java/c++設計程序
  • ·代做CMPT 401、代寫 c++設計程序
  • ·代做CS 259、Java/c++設計程序代寫
  • ·CSCI1120代寫、代做C++設計程序
  • ·COMP30026代做、C/C++設計程序代寫
  • ·MAST30027代做、Java/C++設計程序代寫
  • ·代寫COMP30026、C++設計程序代做
  • ·COS110代做、代寫C/C++設計程序
  • ·DDES9903代做、代寫Python/c++設計程序
  • ·代寫COMP282、代做C++設計程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    一区二区不卡| 黄色工厂这里只有精品| 99精品视频免费观看| 国产一区导航| 麻豆精品av| 欧美久久一区二区三区| 亚洲成人1区| 成人影院天天5g天天爽无毒影院| 精品国产精品| 国内精品久久久久久99蜜桃| 久久国产视频网| 蜜桃免费网站一区二区三区| 欧美一级精品| 日本99精品| 国内不卡的一区二区三区中文字幕| 亚洲成人va| 男人的天堂久久精品| 激情综合自拍| 果冻天美麻豆一区二区国产| 国产精品色婷婷在线观看| 日本亚洲欧洲无免费码在线| 国产白浆在线免费观看| 午夜欧美精品| 欧美肉体xxxx裸体137大胆| 婷婷综合一区| 欧美精品影院| 亚洲人体在线| 欧美日本在线| 日韩精品久久久久久| 都市激情亚洲一区| 美国毛片一区二区三区| 日韩视频在线一区二区三区 | 成人日韩精品| 蜜桃视频在线观看一区二区| 五月天久久网站| 天天做夜夜做人人爱精品| 98视频精品全部国产| 精品中文在线| 日韩电影一区二区三区四区| 久久综合亚洲| 综合亚洲色图| 国产欧美日韩免费观看| 成人动漫视频在线观看| 亚洲色图88| 最新亚洲国产| 欧美黄在线观看| 亚洲久久一区二区| 亚洲国产黄色| 国内久久精品| 亚洲青青久久| 国产成人一区二区三区影院| 欧美影院视频| 国产一区二区欧美| 亚洲涩涩av| 日韩区一区二| 福利片在线一区二区| 9999久久久久| 牛牛精品成人免费视频| 91精品秘密在线观看| 欧美丝袜一区| 欧美日韩国产欧| 亚洲欧美视频一区二区三区| 免费人成网站在线观看欧美高清| 免费一级欧美片在线观看| 免费在线看一区| 亚洲黄色网址| 久久亚洲精品人成综合网| 日韩和欧美一区二区三区| 欧美日本中文| 亚洲裸色大胆大尺寸艺术写真| 偷窥自拍亚洲色图精选| 精品中文在线| 久久精品九九| 日韩一区二区久久| 国产精品国产一区| 青草综合视频| 麻豆精品视频在线观看| 欧美激情自拍| 亚洲理论电影片| 欧美中文一区| 在线国产一区二区| 蜜臀av一级做a爰片久久| 香蕉成人av| 国产精品啊啊啊| 日韩电影一区二区三区四区| 欧美wwwwww| 香蕉久久国产| 欧美日韩精品免费观看视欧美高清免费大片 | 色吧亚洲日本| 日本不卡一区二区| 日韩欧美黄色| 欧美亚洲国产一区| 日韩影院在线观看| 国产极品嫩模在线观看91精品| 综合国产在线| 精品一区二区三区的国产在线观看 | 欧美成年网站| 狠狠爱成人网| 成人日韩在线| 国产激情一区| 久久精品国产www456c0m| 蜜桃一区二区三区四区| 国产一区高清| 日韩二区在线观看| 国产高清久久| 91精品xxx在线观看| 成人在线日韩| 久久激情电影| 亚洲精华液一区二区三区| 一区二区三区午夜视频| 91精品尤物| 男男视频亚洲欧美| 日本不卡中文字幕| 国产精品久久久网站| 免费一级欧美片在线观看| 日韩精品五月天| 国产伦精品一区二区三区在线播放| 99这里有精品| 欧美在线精品一区| 国产精品白丝av嫩草影院| 免费一级欧美片在线观看| 亚洲天天综合| 国产一区亚洲| 久久精品国产99国产| 成人18夜夜网深夜福利网| 免费在线观看成人| 国产精品一区免费在线| 欧美日韩色图| 欧美激情不卡| 神马香蕉久久| 另类中文字幕国产精品| 欧美不卡在线观看| av中文资源在线资源免费观看| 国产精品亚洲人成在99www| 欧美特黄一级| 在线观看视频日韩| 欧美大人香蕉在线| 青青草精品视频| 欧美二区视频| 日日摸夜夜添夜夜添国产精品 | 亚洲专区一区| 一区二区三区在线电影| 91成人精品视频| 日本系列欧美系列| 波多野结衣在线观看一区二区| 欧美一区视频| 国产尤物精品| 亚洲精选国产| 国产农村妇女精品一二区| 成人黄色91| 免费高清在线视频一区·| 国产一区二区区别| 色中色综合网| 999精品视频在这里| 日韩欧美电影| 欧美a大片欧美片| 日本欧美在线| 午夜久久tv| 国产成人一区| 在线天堂新版最新版在线8| 99精品国产高清一区二区麻豆| 欧美gv在线观看| 亚洲a一区二区三区| 美女一区二区久久| 香蕉国产精品| 国产不卡一区| 日韩成人av电影| 99久久综合| 粉嫩av国产一区二区三区| 四虎8848精品成人免费网站 | 欧美大片一区| 国产麻豆精品| 深夜在线视频| 欧美亚洲国产精品久久| 亚洲中无吗在线| 四虎成人av| 精品少妇一区| 亚洲午夜精品一区 二区 三区| 丝瓜av网站精品一区二区| 综合久久成人| 美女www一区二区| 亚洲欧美视频| 老司机精品在线| 欧美久久亚洲| ww久久综合久中文字幕| 黄色成人在线网址| 免费观看性欧美大片无片| 久久精品国产77777蜜臀| 免费看的黄色欧美网站| 欧美三级第一页| 欧美日韩综合| 精品123区| 久热精品在线| 99精品视频在线观看免费播放| 国产麻豆精品久久| 日本中文字幕视频一区| 蜜臀av性久久久久蜜臀av麻豆| 四虎影视精品| 香蕉国产成人午夜av影院| 久久一区欧美|