加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CS 259、Java/c++設計程序代寫
代做CS 259、Java/c++設計程序代寫

時間:2024-10-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Fall 2024 
CS 259 Lab 1 
Accelerating Convolutional Neural Network (CNN) on FPGAs using 
Merlin Compiler 
Due October 9 11:59pm 
Description 
Your task is to accelerate the computation of two layers in a convolutional neural network 
(CNN) using a high-level synthesis (HLS) tool on an FPGA. We encourage you to start with 
using the Merlin Compiler. For an input image with 228 × 228 pixels and 256 channels, you 
are going to calculate the tensor after going through a 2D convolution layer and a 2D max 
pooling layer. The convolution layer has 256 filters of shape 256 × 5 × 5, uses the ReLU 
activation relu(x) = max{x, 0} with a bias value for each output channel. The 2D maxpooling
 layer operates on 2 × 2 non-overlapping windows. You will need to implement this 
function using HLS: 
void CnnKernel(const float* input, const float* weight, const float* bias, float* 
output) 
where input is the input image of size [256][228][228], weight stores the weights of the 
convolution filters of size [256][256][5][5], bias stores the offset values of size [256] that 
will be added to the output channels, and output should be written to by you as defined 
above to store the result of maxpool(relu(conv2d(input, weight) + bias)). The output 
size is [256][112][112]. 
How-To 
FPGA accelerator compilation typically involves three (3) stages: high-level synthesis (HLS), 
bitstream generation, and onboard execution. The last two stages can take days to 
complete. Therefore, in this lab, we only focus on the first stage: HLS. Your performance will 
only be assessed using the estimation in the HLS reports, which is usually accurate. 
However, you are welcome to try out the last two steps if you are interested. 
 
 
 
Connecting to the Server: Method 1 
In this method, you won’t be able to run Merlin directly from your /home directory, so you’ll need 
to copy files back and forth. 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients  
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Source Vitis, navigate to the desired directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /opt 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
 
4. Copy the necessary file to your home directory: 
 
cp /opt/cs-259-f24/lab1/cnn-krnl.cpp /home/<username> 
Connecting to the Server: Method 2 
In this method, you can run Merlin directly from your /home directory, but make sure to export your 
home directory. 
 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients 
 
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run --user $(id -u):100 -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Export your home directory: 
 
export HOME=/home/<username> 
 
4. Source Vitis, navigate to your home directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /home/<username> 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
Build and Run Baseline with Software Simulation 
We have prepared the starter kit for you. Please run: make 
This command will perform a software simulation of the provided starter FPGA HLS kernel. It 
should show “PASS”. You need to use FPGA Developer AMI in this lab unless you are using 
a computer with Xilinx Vitis HLS installation. However, you are still suggested to develop code 
and run software simulation locally to test the correctness. You can move to AWS once you 
enter the tuning stage. 
Understand the automatic Merlin’s optimization 
Before modifying the kernel and adding pragmas, synthesize the CNN kernel with Merlin and 
describe in your report the automatic optimizations made by Merlin and how this reduces 
latency. 
Modify the HLS CNN Kernel 
If you have successfully built and run the baseline HLS CNN kernel, you can now optimize 
the code to design your CNN kernel. Your task is to implement a fast, parallel version of the 
CNN kernel on FPGA. You should start with the provided starter kit. You should edit cnnkrnl.cpp
for this task. When editing, please use the given types input_t, weight_t, bias_t, 
and output_t for the corresponding data, and compute_t for your intermediate values. 
You can use them as if they are float numbers. 
Parallelism should be exploited by using Merlin pragmas and tiling. You are encouraged to 
focus on Merlin pragmas (#pragma ACCEL parallel, #pragma ACCEL pipeline and #pragma 
ACCEL tile). You can explicitly modify the code (tiling, loop permutation, …) but make sure 
the code modified is correct. 
In the starter kit, we simply wrap a sequential CNN code with #pragma ACCEL kernel, and 
Merlin automatically performs data caching, memory coalescing, pipelining and 
parallelization, which yield about 10 GFLOPs. 
Although the skeleton kernel is provided, you are also free to create your own by removing 
the header file inclusion of “lib/cnn-krnl.h” and implement the basic kernel from scratch. 
However, this would require specific expertise in Xilinx FPGA architecture and is not 
recommended for this course. 
Test Your HLS CNN Kernel with Software Simulation 
To perform software emulation of your FPGA implementation of CNN kernel: 
make 
If you see something similar to the following message, your implementation is incorrect. 
Found 21201** errors 
FAIL Since the software simulation step uses the CPU to emulate the hardware behavior, it only 
serves as correctness test and its execution time doesn’t reflect that of actual hardware. Your 
estimated execution time should be retrieved using the command below: 
make estimate 
This command will print out the estimated latency and resource usage of your kernel: 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
| Kernel | Cycles | LUT | FF | BRAM | DSP | URAM |Detail| 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
|CnnKernel (cnn-krnl.cpp:12)|4179564052 (16718.256ms)|49558 (4%)|49381 (2%)|810 (18%)|202 (2%)|25 (2%)|- | 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
The time highlighted in yellow is the estimated execution time of your FPGA kernel. You can 
get the performance by “kNum*kNum*kImSize*kImSize*kKernel*kKernel*2/latency”, or 
164.4/latency (in s) to get the performance in GFLOPS. 
IMPORTANT: Please make sure that all your loops have fixed loop bounds. If any of the loop 
bounds are variable, a performance estimation will not be shown and you will receive no 
performance grade. 
IMPORTANT: The “make estimate” command should finish in 30 minutes, or in two hours 
with highly-complex optimizations. Our recommendation is to halt your estimation using 
Ctrl-C when the time exceeds 30 minutes, except for your last step (after you reach ~100 
GOPS). More than 12 hours in the estimation will result in zero for the performance score. 
As your kernel design becomes more complex, the software simulation and the estimation 
will start to take a significantly longer time. 
IMPORTANT: As you apply more optimizations, your resource usage will also increase. 
Ideally, you should keep applying optimization until your kernel occupies about 80% of these 
resources. The remaining 20% should be reserved for the interfaces (DRAM/PCI-e controller) 
and the downstream flows. Please make sure that resource utilization is less than 80% for all 
FPGA resources. If any of the resources are over this limit, you will receive no performance 
grade. 
IMPORTANT: You can check the HLS report by opening merlin.rpt with a text editor. This 
file will be generated with the command make estimate. You must submit this file with your 
final submission. You should not modify this file in your submission, and it will be all verified 
after submission due. Any modification to this file in your submission constitutes academic 
misconduct and will be reported. 
Advanced Tips for HLS 
Kernel Profiling: If you want to “profile” your kernel, you can open merlin.rpt with a text 
editor and scroll down to Performance Estimate. You can see the trip count, accumulated 
cycles and cycles per call, as well as pipeline initiation interval and parallel factor for each 
loop in the table. For resource usage, you can go to Resource Estimate. No loop level 
information is available, though. If you want to check the resource usage of a code region, 
you can wrap it with a function then run again. 
Kernel after transformation: If you want to see the kernel after being transformed by Merlin, 
you can look for that in .merlin_prj/run/implement/exec/hls/kernel. Annotation for Profiling: If you find the loops in your report hard to read, you can name the 
loops you are interested in using a goto label. For example, this_loop: for (int i = 0; 
i < n; i++); 
Debugging Pipelining: If you are not sure about why you cannot achieve a specific initiation 
interval as you expected, you can open the file below and read the logs. HLS usually gives out 
a reason. 
.merlin_prj/run/implement/exec/hls/_x/logs/CnnKernel/CnnKernel/vitis_hls.log 
Long Synthesis Time In Pipelining: You will experience long HLS synthesis time (for 
generating the estimation) if you pipeline a loop with a large loop body. Besides, please note 
that as all loops inside a pipeline will be unrolled, it may be automatically a large loop body. 
In this case, you may want to exchange the order of pipelining and unrolling and see if the time 
can get improved. 
Use Functions for Shorter Synthesis Time: If you experience long synthesis time, you may try 
wrapping some loops into a function and specify #pragma HLS inline off inside the 
function body. However, this may lead to inaccurate dependency analysis or memory port 
analysis and cause lower performance sometimes. There might be some workarounds, or 
not. For example, if you have access to A[k + i][j] inside the function, passing A + k to 
the function and accessing A’[i][j] can allow HLS to understand the array partitioning 
better than passing A. You need to do experiments. 
General Tips 
● When you develop on AWS, to resume a session in case you lose your connection, you 
can run screen after login. You can recover your session with screen -DRR. You should 
stop your AWS instance if you are going to come back and resume your work in a few 
hours or days. Your data will be preserved but you will be charged for the EBS storage 
for $0.10 per GB per month (with default settings). You should terminate your instance 
if you are not going to come back and resume your work. Data on the instance will be 
lost. 
● You are recommended to use private repositories provided by GitHub to backup your 
code. Never put your code in a public repo to avoid potential plagiarism. To check in 
your code to a private GitHub repo, create a repo first. 
git branch -m upstream 
git checkout -b main # skip these two lines if you are reusing the folder in Lab 1 
... // your modifications 
git add cnn-krnl.cpp merlin.rpt 
git commit -m "lab1: first version" # change commit message accordingly 
# please replace the URL with your own URL 
git remote add origin git@github.com:YourGitHubUserName/your-repo-name.git 
git push -u origin main 
● You are recommended to git add and git commit often so that you can keep track of 
the history and revert whenever necessary. 
● Make sure your code produces correct results! 
(Optional) Modify the HLS CNN Kernel using Vitis Pragmas 
You are encouraged to use mainly Merlin pragmas. If needed, you can use Vitis pragmas for 
finer-grained control and optimization. The list of pragmas in Vitis can be found here. You can simply write Vitis pragmas and Merlin pragmas in the same file (cnn-krnl.cpp), but note 
that, to apply an HLS pragma to a loop, you need to put the pragma inside the loop body 
instead of before it. 
Submission 
You need to report the estimated performance results of your FPGA-based implementation on 
a Xilinx Ultrascale+ VU9P FPGA (the FPGA we are using, specified in the makefile). Please 
express your performance in GFLOPS and the speedup compared with the starter-kit version. 
Your report should also include: 
● Please run the input C file through the Merlin Compiler, identify the code 
transformation and HLS pragmas that Merlin added, and discuss why. 
● Please explain the parallelization and optimization strategies you have applied for 
each loop in the CNN program (convolution, max pooling, etc) in this lab. Include the 
pragmas (if any) or code segments you have added to achieve your strategy. 
● Please incrementally evaluate each parallelization/optimization that you have applied 
and explain why it improves the performance. 
● Please report the FPGA resources (LUT/FF/DSP/BRAM) usages, in terms of resource 
count and percentage of the total. Which resource has been used most, in terms of 
percentage? 
● Optional: The challenges you faced, and how you overcame them. 
● (Bonus +5pts): Analyze your code and check if the DSP/BRAM resource usage 
matches your expectation. Only the adders, multipliers, and size of arrays need to be 
considered. Please attach related code segments to your report and show how you 
computed the expected number. Provide a discussion on possible reasons if they 
differ significantly. 
You also need to submit your optimized kernel code. Do not modify code in the lib directory. 
Please submit on Gradescope. Your final submission should contain and only contain these 
files individually: 
 ├ cnn-krnl.cpp 
 ├ merlin.rpt 
 └ lab**report.pdf 
File lab**report.pdf must be in PDF format. 
Grading Policy 
Your submission will only be graded if it complies with the formatting requirements. 
Missing reports/code or compilation errors will result in 0 for the corresponding 
category(ies). 
Correctness (40%) 
Please check the correctness using the command “make”. Performance (40%) 
Your performance will be evaluated based on the estimation report generated using the 
command “make estimate”. The performance point will be added only if you have the 
correct result, so please prioritize the correctness over performance. Your performance will 
be evaluated based on the ranges of throughput (GOPS). Ranges A+ and A++ will be defined 
after all the submissions are graded: 
● Range A++, better than Range A+ performance: 40 points + 20 points (bonus) 
● Range A+, better than Range A performance: 40 points + 10 points (bonus) 
● Range A GFLOPS [200, 280]: 40 points 
● Range B GFLOPS [120, 200): 30 points 
● Range C GFLOPS [60, 120): 20 points 
● Range D GFLOPS [30, 60): 10 points 
● Lower than range F [0, 30): 0 points 
 
Report (20%) 
Points may be deducted if your report misses any of the sections described above. 
Academic Integrity 
All work is to be done individually, and any sources of help are to be explicitly cited. You must 
not modify the HLS report merlin.rpt in your submission. Any instance of academic 
dishonesty will be promptly reported to the Office of the Dean of Students. Academic 
dishonesty includes, but is not limited to, cheating, fabrication, plagiarism, copying code from 
other students or from the internet, modifying the software-generated report, or facilitating 
academic misconduct. We’ll use automated software to identify similar sections between 
different student programming assignments, against previous students’ code, or against 
Internet sources. We’ll run HLS on all submissions and compare the reproduced HLS 
report with the submitted report. Students are not allowed to post the lab solutions on public 
websites (including GitHub). Please note that any version of your submission must be your 
own work and will be compared with sources for plagiarism detection. 
Late policy: Late submission will be accepted for 24 hours with a 10% penalty. No late 
submission will be accepted after that (you lost all points after the late submission time). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE4016、Python設計編程代做
  • 下一篇:DDA3020代做、代寫Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    天美av一区二区三区久久| 日韩免费特黄一二三区| 偷窥自拍亚洲色图精选| 成人亚洲免费| 亚洲欧美日韩精品一区二区 | 亚洲综合专区| 涩涩视频在线播放| 黄色欧美日韩| 国产成人tv| 亚洲色图综合| 成人在线免费av| 国产精品99久久久久久动医院| 国产成人tv| 久久99精品久久久久久园产越南| 久久精品国产精品亚洲精品| 免费看精品久久片| 在线国产一区| 欧美一级全黄| 一区视频网站| 国产精品亚洲欧美一级在线| 国产成人精品一区二区三区在线 | 欧美高清日韩| 精品国产中文字幕第一页| 亚洲欧美一级| 久久精品亚洲| 婷婷成人av| 国产精品专区免费| 免费久久99精品国产自在现线| 久久精品亚洲人成影院 | 97精品国产| 一区在线观看| 亚洲小说欧美另类婷婷| jizz国产精品| 精品国产一区二| 国产精品一在线观看| 日韩国产欧美在线观看| 99久久综合国产精品二区| 日韩免费看片| 九色porny丨入口在线| 日韩中文字幕区一区有砖一区 | 亚洲播播91| 亚洲伊人av| 伊人网在线播放| 蜜桃久久久久久| 日韩制服丝袜av| 日韩av密桃| 91麻豆精品国产91久久久平台 | 日韩av一区二| 精品麻豆剧传媒av国产九九九| 欧美国产亚洲精品| 亚州精品视频| 日韩av二区在线播放| 日韩在线你懂的| 日韩av电影天堂| 在线一区二区三区视频| 51精品国产| 国产精品调教| 久久一本综合| 亚洲黄色影院| 四虎8848精品成人免费网站| 91久久夜色精品国产按摩| 成人美女视频| 国产精品黄色片| 日韩精品电影在线观看| 日本中文字幕一区| 影音先锋日韩在线| 国产一区二区精品福利地址| 国产videos久久| 97精品久久| 在线日韩av| 亚洲综合日韩| av资源新版天堂在线| 性感美女一区二区在线观看| 亚洲精品777| 欧美激情视频一区二区三区免费| 国产成人视屏| 精品91福利视频| 美女福利一区| 夜夜夜久久久| 久草在线资源福利站| 狂野欧美性猛交xxxx| 97精品资源在线观看| 日韩精品成人在线观看| 清纯唯美亚洲经典中文字幕| 欧美日韩三级| 国产欧美一区二区三区精品酒店 | 福利一区视频| 中文成人在线| **爰片久久毛片| 艳女tv在线观看国产一区| 老鸭窝毛片一区二区三区 | 麻豆免费看一区二区三区| 国产精品欧美在线观看| 给我免费播放日韩视频| 一本久道久久综合婷婷鲸鱼| 午夜精品久久久久久久久久蜜桃| 三级久久三级久久久| 日韩—二三区免费观看av| 欧美.www| 欧美成人黑人| 一区二区影视| 欧美一二区在线观看| 免费高清视频精品| 一区二区动漫| 少妇精品在线| 亚洲深爱激情| 欧美在线国产| 一区二区三区在线资源| 香蕉成人久久| 日韩精品国产精品| 清纯唯美亚洲综合一区| 亚洲综合激情| 亚洲字幕久久| 99久久99视频只有精品| 另类图片综合电影| 一区二区影院| 91久久久精品国产| 97久久网站| 亚洲精品在线国产| 免费在线观看精品| 亚洲欧美综合久久久| 99国内精品久久久久久久| 九色porny自拍视频在线观看| 成人国产精品一区二区网站| 亚洲手机视频| 国产欧美在线观看免费| 青草伊人久久| 国产精品蜜芽在线观看| 成人久久精品| 香蕉国产精品偷在线观看不卡| 亚洲国产欧美国产综合一区| 久久人人97超碰国产公开结果| 欧美高清视频手机在在线| 国产成人高清| 美女黄网久久| 99er精品视频| 亚洲免费播放| 欧美日韩ab| 在线视频亚洲| 欧美亚洲一区| 亚州av乱码久久精品蜜桃| 久久精品国产免费看久久精品| 国产一区二区三区不卡av| 不卡av播放| 亚洲开心激情| 国产经典一区| 欧美日韩一区二区三区不卡视频| 手机看片久久| 欧美a一欧美| 日韩成人在线一区| 国产专区一区| 欧美日本不卡高清| 亚洲综合丁香| 精品国产亚洲一区二区三区| 操人在线观看| 第四色中文综合网| 日韩欧美激情| 亚洲激情中文| 一区二区三区网站| 石原莉奈在线亚洲三区| 国产亚洲欧美日韩在线观看一区二区 | 国产剧情一区二区在线观看| 老司机午夜精品视频| 日韩av网站免费在线| 亚洲伊人av| 99视频精品全国免费| 日本vs亚洲vs韩国一区三区二区| **女人18毛片一区二区| 综合久久伊人| 日韩欧美一区免费| 国产99亚洲| 国产精区一区二区| а√天堂8资源在线| 少妇一区二区三区| 国产精品第十页| 免费视频一区二区| 国产精品久av福利在线观看| 国产日韩欧美高清免费| 黄色免费成人| 亚洲精品aⅴ| 亚洲人成高清| 首页国产精品| 美女久久久久| 国产免费久久| 日韩精品免费观看视频 | 欧美1级片网站| 久久精品国产清高在天天线| 亚洲欧美在线人成swag| 日韩精品二区| 欧美午夜不卡影院在线观看完整版免费| 国内精品视频| 日本久久久久| 国产一区二区精品| 欧美男人操女人视频| 国产亚洲观看| 四虎精品一区二区免费| 另类天堂av| 亚洲第一网站| 成人av影音| 国产午夜精品一区在线观看|