加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫MMME4056、代做MATLAB編程設計
代寫MMME4056、代做MATLAB編程設計

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ESSENTIAL INFORMATION
MODULE CODE MODULE TITLE ASSESSMENT TYPE
MMME4056 Integrated Systems 
Analysis
Simulink and Report
COURSEWORK TITLE WEIGHT (INDICATIVE EFFORT)
MMME4056, ISA 2024, COURSEWORK 30% (Approx. 10-15
hrs)
SUBMISSION DATE SUBMISSION TIME SUBMISSION METHOD
15/11/2024 15:00 Moodle
FEEDBACK DETAILS
Feedback will be provided within 20 working days and will consist of an individual feedback 
form. Please note the marks released on Moodle are raw. If you have made a late submission 
and it is not covered by an EC or an accommodation then the deductions will be made when I 
submit the marks to the board after the exams. 
LEARNING OUTCOMES ASSESSED (IN BOLD)
1. Demonstrate an understanding of the concept of system behaviour and the design of 
experiments for characterising system components. - AHEP4: 2, 6 
2. Critically evaluate and analyse complex dynamic systems behaviour using an 
appropriate numerical or analytical methodology - AHEP4: 1, 2, 3, 6 
3. Evaluate the reliability of the separable system components, coupled system 
components and systems as a whole - AHEP4: 6, 9
SUBMISSION REQUIREMENTS
• This exercise constitutes 30% of the total course mark and is marked out of 100. 
Marks for individual sections are indicated for that section.
• Submit your coursework via MOODLE as a ZIP file. This ZIP-file should contain the 
coursework report itself (as a pdf document) and all files that you used in the CW. 
Please adopt the file-naming suggested in this coursework specification. More details 
about ‘WHAT TO SUBMIT’ can be found in the ASSESSMENT DETAILS.
• It must be possible to open the SIMULINK models submitted using MATLAB release 
R2023 or later. Models presented in different releases that cannot be opened will not
be marked. 
• Your report should not exceed 20 pages including the cover page, references, and 
appendixes.
• Your Coursework should have a front page which will have your name and student 
number.
• Text elements should be typed. Ideally in Arial 11 point.
• Drawings and figures must be made by computer. Drawings and figures may not be 
copied from the internet. In ALL cases they should be appropriately titled and 
captioned. The titles and captions should be clear and legible. 
• You may not discuss the details of your answers with other students. Software checks 
will be made to ensure no copying or plagiarism has occurred.
• Whenever you talk about someone else’s work (including journal papers, books, 
conference papers, technical reports, theses/dissertations, websites, etc.) if necessary,
you must include a reference to the original source of this information. You should use 
the IEEE referencing style for your report. 
MMME4056... Integrated Systems Analysis
COURSEWORK 
SYSTEM DESCRIPTION.
Figure 1 shows a floating wind turbine of spar-buoy type. These floating 
supports for wind turbines achieve stability by having a centre of mass 
below the centre of buoyancy (i.e. the centre of gravity of the displaced 
water).
Spar-buoy floating arrangements are considered by some to be suitable for 
very deep water. They are relatively compliant in “pitch”. That is to say, 
when the wind blows and exerts a downwind thrust force on the rotor of 
the wind turbine, the entire structure rocks backwards a little bit. As the 
structure is moving backwards relative to the oncoming wind, the relative 
wind speed reduces and so a coupling arises between the thrust force, F(t), 
acting on the turbine and the angle of tilt, (t), of the platform. This 
coursework is based on modelling the dynamics of such a floating wind 
turbine platform and applying the methods taught within MMME4056.
The downwind thrust on a wind turbine rotor is not a simple function of 
the wind speed, v(t). Every modern wind turbine has a particular fixed 
rated wind speed vrated. For wind speeds lower than the rated wind speed 
(v(t) < vrated), the turbine controller tries to extract the maximum available 
power from the air and this results in a downwind thrust that is 
proportional to the square of the wind speed, 𝐹(w**5;) = 𝑎 × w**7;(w**5;)
2
. By 
contrast, for wind speeds higher than the rated wind speed (v(t) > vrated), 
the turbine is not able to absorb all of the power available and the 
controller must deliberately spill some power by pitching the blades 
suitably. This results in a different downwind force relationship …
𝐹(w**5;) = 𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**7;(w**5;). Figure 2 below shows a typical relationship 
between wind speed and the downwind thrust force acting on a wind turbine. 

q
Fig. 1: A Spar-buoy floating 
 wind turbine support
F
H
Fig. 2: Downwind thrust vs. (relative) wind speed.
vrated
Vcut-out
Wind speed, v →
Downwind thrust, F

OVERALL REQUIREMENTS
The requirement of this coursework is to understand this floating wind turbine as a simple dynamic system, to 
simulate its behaviour as wind-speed changes using SIMULINK and to analyse its behaviour at two different 
equilibrium states using methods taught in the course. 
The submission should be based on what is explicitly asked for in this coursework specification. The primary 
material being marked is a report – although you are asked to submit your SIMULINK models also. It must be 
possible to open the SIMULINK models submitted using the version of MATLAB presently installed on 
University computers. Models prepared in more modern releases will not be marked. 
There are no additional marks for long reports!
FILES PROVIDED TO YOU – AND WHAT THEY DO.
CW_Spec.docx : This file. It contains the coursework specification.
f_diesel.m : A MATLAB function not directly related to this coursework but supplied to help illustrate 
how a SIMULINK model can call a MATLAB function.
f_thrust.m : An MATLAB function that is not complete. You should complete this function by 
modifying each line of code carrying the comment % Modify this line
In some cases, the modification simply involves you inserting the appropriate 
numerical values. In the remaining cases, you should insert the correct formula.
sim_diesel.slx : A SIMULINK model calling the function f_diesel.m. 
As well as showing how to call an Interpreted MATLAB Function in SIMULINK,
this also shows how to transfer data into the MATLAB workspace so that you can 
obtain plots using MATLAB directly.
stud_data.xls : An EXCEL spreadsheet containing one unique row of data for each student. 
Each row contains (in this order) … {vrated, a, J, k, c, H, p, q…}
start_here.m : A MATLAB script. This opens up a SIMULINK model of the diesel engine only, 
(<sim_diesel.slx>) and then runs the model and plots both  and &#***3; vs. time. You might
choose to copy and then modify this so as to use it as a way to open and run your own
SIMULINK model. You can run <start_here.m> either by clicking the big green 
arrowhead in the top toolbar of the editor or else by just typing >>start_here 
at the MATLAB command prompt).
WHAT TO SUBMIT
Submit your coursework via MOODLE as a ZIP file. This ZIP-file should contain the coursework report itself (as a 
WORD or PDF document) and all files that you used in the CW. 
IMPORTANT: Please make clear on the first page of the report which student you are by identifying which 
Student ID# (SID# in the spreadsheet) applies to you (a number less than 401). If, for some reason, you do not find 
your name in the spreadsheet, please contact the academic in charge of this coursework to get one. For the 
purposes of your report, please refer to this number as the “SID_No”. (Student Identification number) on your 
report clearly.
 Marks will be deducted if you do not show this information clearly on page 1.
The coursework report should comprise:
• A response to Task 1 (the Table and, at most, 2 further sentences)
• A response to Task 2 (the corrected function, <f_thrust.m>, and four numerical answers)
• A response to Task 3 (maximum 2 pages). This should include an explanation of how you 
applied an algebraic or iterative approach to finding the two equilibrium conditions and a 
description of each equilibrium condition comprising {𝐹9.5,𝜙9.5, w**2;9.5} and {𝐹14,𝜙14, w**2;14}. 
• A response to Task 4 which should comprise
- a legible view of the SIMULINK model (on a single page)
- an explanation in text of how you have applied the initial conditions
- the plot of q(t) vs. t.
• A response to Task 5 (1 page) comprising the SIMULINK Model and a plot of q(t) vs. t.
• A response to Task 6 (<2 pages) containing an explanation of how you determined the state-space 
representation for one condition (you need not repeat this explanation) and how you used the state-space 
representation to determine how q(t) varies with respect to time, t. Also a graph representing q(t) vs. t from 
each of the two calculations (Task 5 and Task 6).
• A response to Task 7 (<2 pages) containing the eigenvalues of the A matrix for the equilibrium condition at 
v(t)  14 and an interpretation of these. Also the graph of q(t) vs. t from the new SIMULINK model and a 
commentary on any connection between the eigenvalues and this graph. 
EQUATIONS DEFINING THE SYSTEM
The following equations define the behaviour of this system. In these equations, a dot above a quantity indicates 
differentiation with respect to time. The angle 𝜙 is measured in radians. 
(1) Define: w**8;(w**5;) ≔ w**7;(w**5;) − 𝐻 × 𝑐w**0;w**4;(𝜙) × 𝜙(w**5;)
(2) If w**8;(w**5;) > w**7;𝑐w**6;w**5;w**0;w**6;w**5;, 𝐹(w**5;) = (𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**7;𝑐w**6;w**5;w**0;w**6;w**5;) ∗ exp (−5(w**8;(w**5;) − w**7;𝑐w**6;w**5;w**0;w**6;w**5;))
Otherwise if w**8;(w**5;) ≥ w**7;w**3;𝑎w**5;Ү**;𝑑, 𝐹(w**5;) = 𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**8;(w**5;)
Otherwise w**8;(w**5;) < w**7;w**3;𝑎w**5;Ү**;𝑑 and 𝐹(w**5;) = 𝑎 × w**8;(w**5;)
2 × w**4;𝑖𝑔𝑛(w**8;(w**5;))
(3) 𝐽 × 𝜙(w**5;) + 𝑐 × 𝜙(w**5;) + 𝑘 × 𝜙(w**5;) = 𝐹(w**5;) × 𝐻 × 𝑐w**0;w**4;2
(𝜙)
(4) w**2; = 𝐻 × w**4;𝑖𝑛(𝜙)
THE COURSEWORK REQUIREMENT – 7 TASKS.
Task 1. Based on the equations supplied above, insert “Y” (for “yes”), “N” (for “no”) or “M” (for “maybe”) in 
each un-shaded box of the table below to identify the nature of each quantity that appears in the equations.
Quantity An Input ? A State 
Variable ?
A Rate 
Variable ?
An Output ? An Intermediate 
(Derived) Variable ?
A Parameter?

State whether there is any other state variable not mentioned in the table above. State also whether there is any 
other rate variable not mentioned in the table above. 
[10 marks]
Task 2. Correct the necessary lines of code present in the supplied function, <f_thrust.m> and present that 
function in your report. Then call that function directly from the MATLAB for four different wind speeds: 
{ 3m/s, 9.5m/s, 14m/s, 28m/s }. Report the results. 
HINT: To get the answer for 9.5m/s, type … f_thrust( 9.5) at the MATLAB command prompt. 
[10 marks]
Task 3. Without using SIMULINK, determine an equilibrium condition for the dynamic system at the wind 
speeds 9.5m/s and 14m/s. For each of these speeds, report the following steady values, 
𝐹9.5 = , 𝐹14 = 
𝜙9.5 = , 𝜙14 = 
w**2;9.5 = , w**2;14 = 
HINT: There is no “closed-form” solution here so you will have to apply an iterative approach of some sort. A 
manual iteration process is fine. You do not have to write any code to implement an iterative solution automatically 
or to use any built-in iterative methods within MATLAB. 
[15 marks]
Task 4. Now create a SIMULINK model of the system and run this model over a period of 500s with a constant 
wind-speed of 9.5m/s taking the initial conditions to be (0) = 0.15 rad and 𝜙(0) = 0. Plot q(t) vs. t . 
[25 marks]
Task 5. Modify the SIMULINK model from Task 4 so that the wind speed is now varying sinusoidally 
according to w**7;(w**5;) = 9.5 + 0.2𝑐w**0;w**4;(0.2w**5;). Change the initial conditions so that (0) =  determined from Task 3. 
Plot q(t) vs. t over 500s.
[10 marks]
Task 6. Create state-space representations of the system for each of the two different equilibrium conditions 
discovered in Task 3. In each case, treat v(t) as the only input and q(t) as the only output and report the matrices, 
{A, B, C, D} for both cases separately. For the case of v(t)  9.5 m/s, use these matrices to develop an alternative 
prediction for q(t) vs. t from Task 5. Create a plot containing two curves on the same graph representing q(t) vs. t. 
One of those curves should use the data from Task 5 and the second curve should use the data from Task 6.
[15 marks]
Task 7. Calculate the eigenvalues of the matrix A for the case v(t)  14 m/s and interpret what these 
eigenvalues tell you. Modify the SIMULINK model from Task 4 so that the input wind speed is now a steady 
14m/s. Set the initial conditions to be (0) = ( + ) and run this model for 500s. Once again, plot q(t) vs. t. 
Comment on any connections between what you see from the SIMULINK model output and what you found from 
the eigenvalues of matrix A. 
[15 marks]

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:LCSCI4207代做、Java/Python程序代寫
  • 下一篇:代寫CIS5200、代做Java/Python程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲资源在线| 精品欧美日韩精品| 日本亚洲欧美天堂免费| 欧美美女被草| 一本色道久久精品| 国产图片一区| 成人午夜888| 欧美日韩破处视频| 另类av一区二区| 99精品美女| 日韩视频1区| 日本中文在线一区| 九色porny视频在线观看| 欧美精品羞羞答答| 给我免费播放日韩视频| www.成人| 日本欧美一区二区三区乱码| 亚洲国产福利| 午夜一区二区三区不卡视频| 久久在线免费| 国产成人tv| 日韩激情av在线| 国产高清日韩| 日本免费在线视频不卡一不卡二| 精精国产xxxx视频在线播放| 国产精品不卡| 亚洲少妇自拍| 精品一区毛片| 欧美一区二区三区激情视频| 国内毛片久久| 99久久香蕉| 日本一区影院| 日韩欧美影院| 亚欧日韩另类中文欧美| 中文字幕日本一区| 国产精品红桃| 欧美影院一区| 日韩亚洲国产免费| 国产69精品久久| 成人午夜sm精品久久久久久久| 热三久草你在线| 国产精品久久久久久久免费观看| 蜜桃伊人久久| 久久综合影视| 成人精品电影| 日韩av在线播放网址| 美女国产精品| 丝袜亚洲另类欧美| 免费欧美日韩国产三级电影| 丝袜美腿亚洲色图| 丝瓜av网站精品一区二区| 午夜在线播放视频欧美| 久久成人免费| 成人一级毛片| 在线成人av观看| 91伊人久久| 国产欧美在线| 亚洲美女91| av在线亚洲一区| 国产一区二区三区日韩精品| 日韩免费电影在线观看| 88久久精品| 色婷婷综合久久久久久| 欧美中文字幕一区二区| 黑丝美女一区二区| 99香蕉国产精品偷在线观看| 免费观看在线色综合| 亚洲日本天堂| 欧美激情啪啪| 综合在线一区| 日韩精品一区二区三区中文在线 | 欧美午夜不卡| 免费看黄裸体一级大秀欧美| 色综合天天综合网中文字幕| 欧美7777| 日韩精品高清不卡| 国产精品视频一区视频二区| 日韩成人18| 少妇高潮一区二区三区| 欧美午夜a级限制福利片| 国产精品久久久乱弄 | 国产欧美日韩在线观看视频| 日韩电影在线看| 日韩精品免费一区二区在线观看 | 欧美黑人巨大videos精品| 日韩av中文字幕一区二区| 亚洲精品在线a| 欧美日韩国产高清电影| 免费在线看一区| 成人精品高清在线视频| 亚洲精品伊人| 第九色区aⅴ天堂久久香| 欧美天天视频| 精品欧美一区二区三区在线观看| 国产日韩欧美| 亚洲2区在线| 女人天堂亚洲aⅴ在线观看| av免费不卡国产观看| 久久精品亚洲一区二区| 日韩av在线发布| 欧美在线资源| 国产精品第一| 久久久91麻豆精品国产一区| 91久久久精品国产| 欧洲成人一区| 亚洲春色h网| 红桃视频国产一区| 国产一区二区久久久久| 婷婷精品在线观看| 不卡日本视频| 99久久亚洲国产日韩美女| 国产一区二区三区日韩精品| 久久中文字幕av| 在线视频cao| 国语精品视频| 亚洲国产精品综合久久久| 欧美美女福利视频| 中文无码日韩欧| 免费美女久久99| 伊人久久大香| 欧美 日韩 国产一区二区在线视频| sm性调教片在线观看| 国产欧美久久一区二区三区| 91久久电影| 国产一区二区三区久久久久久久久| 国产日韩在线观看视频| 男人操女人的视频在线观看欧美| 日本视频一区二区| 久久美女视频| 四虎精品一区二区免费| 国内精品麻豆美女在线播放视频| 超碰高清在线| 精品中文视频| 91偷拍一区二区三区精品| 亚洲国产合集| 日本女优一区| 亚洲欧美日本伦理| 免费成人在线观看| 亚洲精品无吗| 日本一区二区免费高清| 国产一区二区三区四区大秀| 亚洲免费精品| 99视频这里有精品| 亚洲欧美网站| 国产一区二区观看| 蜜桃视频在线一区| 久久伦理中文字幕| 老色鬼在线视频| 国产无遮挡裸体免费久久| 美女福利一区二区三区| 欧美日韩天堂| 日韩av中字| 神马午夜久久| 麻豆国产精品777777在线| 亚洲激情中文在线| 国产麻豆精品| 国产精品久久久久久久久妇女 | 五月天亚洲一区| 美国毛片一区二区| 日韩精品免费一区二区夜夜嗨| 色综合天天爱| 精品国产一区二区三区av片| 深夜福利亚洲| 合欧美一区二区三区| 欧美日韩123| 亚洲男人av| 亚洲国产专区校园欧美| 中文字幕一区二区av| 欧美激情成人| 99国内精品久久久久久久| 亚洲天堂一区二区三区四区| 免费在线观看视频一区| 成人18夜夜网深夜福利网| 国产激情欧美| 亚洲综合丁香| 9l亚洲国产成人精品一区二三| 久久久久黄色| 丝袜美腿一区二区三区| 第四色中文综合网| 日本va欧美va精品发布| 蜜臀久久久久久久| 日本久久成人网| 亚洲香蕉久久| 欧美天堂一区二区| 伊人久久亚洲影院| 日韩免费成人| 欧美欧美天天天天操| 毛片在线网站| 欧美日韩国产欧| 荡女精品导航| 欧美日韩黄网站| 四虎成人精品一区二区免费网站| 亚洲激情社区| 精品国内亚洲2022精品成人| 91久久青草| 欧美一区二区三区免费看 | 日本精品在线播放 | 欧美日韩在线观看首页| 欧美+亚洲+精品+三区| 九九九九九九精品任你躁|