加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫(xiě)5614. C++ PROGRAMMING

時(shí)間:2024-02-29  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
代寫(xiě) 5614. C++ Programming-留學(xué)生作業(yè)幫 (daixie7.com)


請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:代寫(xiě)CS444 Linear classifiers
  • 下一篇:莆田鞋官方正品入口,這十個(gè)官方入口必須收藏
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶(hù)要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    久久视频在线观看| 麻豆成全视频免费观看在线看| 国产精品欧美在线观看| 经典三级一区二区| 日韩天堂av| 精品久久国产| 亚洲综合图色| 久久精品国产网站| www.youjizz.com在线| 国内精品99| av自拍一区| 精品一区二区三区免费看| 福利视频一区| 欧美国产偷国产精品三区| 免费黄色成人| 精品久久久久久久久久久aⅴ| 国产精品一区二区三区av| 成人在线免费电影网站| 中文字幕人成乱码在线观看| 欧美特黄一级| 欧美一区二区麻豆红桃视频 | 久久av偷拍| 欧美精品二区| 久久精品国产精品亚洲红杏| 少妇视频一区| 免费看欧美美女黄的网站| 黄色欧美日韩| 国模 一区 二区 三区| 久草精品视频| 国产毛片久久久| 视频精品一区| 久久av网站| 日本三级亚洲精品| 亚洲涩涩av| 色综合综合网| 日韩二区三区四区| 久久99精品久久久久久园产越南| 亚洲乱亚洲高清| 久久婷婷国产| 91成人精品观看| 91成人app| 亚洲日本免费电影| 99精品国产九九国产精品| 日本不卡一二三区黄网| 麻豆高清免费国产一区| 亚洲国产二区| 六月丁香综合在线视频| 亚欧成人精品| 欧美a级一区二区| 麻豆一区二区99久久久久| 肉色丝袜一区二区| 日韩国产高清影视| 亚洲理论在线| 国产不卡一区| 精品伊人久久| 精品亚洲成人| 天堂日韩电影| 欧洲grand老妇人| 国产手机视频一区二区| 巨乳诱惑日韩免费av| 成人激情诱惑| 黑人精品一区| 久久精品国产福利| 亚洲日本国产| 美女久久99| 亚洲精品v亚洲精品v日韩精品| 国内精品麻豆美女在线播放视频| 啪啪国产精品| 黑人一区二区| 欧美好骚综合网| 国产精品天堂蜜av在线播放| 国产情侣久久| 久久99青青| 精品国产乱码久久久久久果冻传媒| 林ゆな中文字幕一区二区| 黑人操亚洲人| 色综合天天爱| 欧美另类激情| 国产一区二区三区四区大秀| 日韩一二三区在线观看| 人体久久天天| 亚洲欧美日韩一区在线观看| 超碰成人av| 日韩国产高清影视| 日本亚洲视频| 亚洲网站在线| 麻豆网站免费在线观看| 99精品热6080yy久久| 久久97视频| 精品国产乱子伦一区二区| 一区精品久久| 日本精品在线一区| 国产成人久久精品一区二区三区| 一区二区三区四区视频免费观看 | 日本美女视频一区二区| 精品亚洲a∨一区二区三区18| 99久久视频| 欧美a级成人淫片免费看| 国产成人福利夜色影视| 综合亚洲色图| 亚洲精品国产偷自在线观看| 欧美三级网站| 在线免费观看亚洲| 久久九九国产| 亚洲精品88| 国产一区不卡| 欧美二区不卡| 日本精品另类| 日本一区二区三区电影免费观看| av亚洲在线观看| 日韩a**中文字幕| 色棕色天天综合网| 亚洲成人精选| 欧美在线91| 精品国产乱码久久久久久果冻传媒| 日韩主播视频在线| 亚洲国产激情| 久久免费黄色| 成人日韩在线观看| 日韩成人在线看| 久久国产精品久久久久久电车| 日韩精品乱码av一区二区| 精品国精品国产自在久国产应用| 日韩制服丝袜av| 日本美女一区二区三区视频| 91精品国产成人观看| 久草在线资源福利站| 欧洲专线二区三区| 久久国产精品99国产| 亚洲综合激情在线| 先锋资源久久| 国产精品久久777777毛茸茸| 久久狠狠久久| 成人国产网站| 成人精品中文字幕| a屁视频一区二区三区四区| 北条麻妃在线一区二区免费播放 | 欧洲杯足球赛直播| 国产精品亚洲欧美| 婷婷精品视频| 国产精品亚洲欧美| 国产综合精品一区| 亚洲国产三级| 亚洲精品1区| 国产精品日本一区二区三区在线| 99视频+国产日韩欧美| 99久久久成人国产精品| 亚洲专区一区| 国产亚洲欧美日韩在线观看一区二区 | 日韩欧美高清一区二区三区| 蜜桃一区二区三区四区| 日本一区福利在线| 欧美激情成人| 国产欧美一区二区三区米奇| 免费在线观看一区| 久久精品青草| 亚洲国产一区二区三区a毛片| japanese国产精品| 999精品嫩草久久久久久99| 老司机精品导航| 激情综合婷婷| 婷婷精品久久久久久久久久不卡| 欧美日韩在线网站| 一区二区三区网站 | 天天综合网天天| 久久国产成人午夜av影院宅| 麻豆一区二区在线| 水蜜桃久久夜色精品一区的特点| 亚洲伊人春色| 亚洲天堂1区| 欧美女人交a| 日韩欧美中文在线观看| av在线不卡精品| 亚洲男女av一区二区| 亚洲动漫在线观看| 88xx成人免费观看视频库| 91九色精品国产一区二区| 国产精品日本一区二区不卡视频| 国产在线看片免费视频在线观看| 精品国产精品国产偷麻豆| 欧美aa在线视频| 色男人天堂综合再现| 久久久国产精品一区二区中文| 亚洲人人精品| 高潮一区二区| 香蕉av一区二区 | 亚洲h色精品| 国产亚洲一卡2卡3卡4卡新区| 日韩中字在线| 伊人久久大香线蕉综合热线| 日产国产高清一区二区三区| 国产成人精品一区二区三区免费| 在线综合亚洲| 久久精品主播| 亚洲精品播放| 日韩国产欧美在线播放| 美女av在线免费看| 欧美日韩精品| 久久人人超碰| 亚洲自拍电影|