加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS444 Linear classifiers

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:莆田鞋在哪買:介紹十個最新購買渠道
  • 下一篇:代寫5614. C++ PROGRAMMING
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲成a人片77777在线播放 | 亚洲图片小说区| 丝袜亚洲另类丝袜在线| 黄色成人美女网站| 高清一区二区三区av| 日韩中文在线电影| 国产精品免费看| 少妇一区二区三区| 日韩经典中文字幕一区| 久久综合导航| 国产调教在线| 国产精品视频久久一区| 久久国产精品色av免费看| 国产精品一区二区三区av| 日韩精品第二页| а√天堂中文资源在线bt| 99伊人成综合| 蜜臀91精品国产高清在线观看 | 成人在线免费视频观看| 亚洲图片久久| 欧美精品大片| 亚欧美中日韩视频| 欧美国产日韩电影| 日本不良网站在线观看| 亚洲免费大片| 不卡中文一二三区| 成人在线亚洲| 丁香综合av| 精品中文字幕一区二区三区四区| 亚洲伦理久久| 另类欧美日韩国产在线| 国产欧美自拍| 国产一区二区主播在线| 黄色亚洲网站| av在线资源| 久久亚洲风情| 老司机精品福利视频| 在线亚洲国产精品网站| 午夜久久免费观看| 麻豆精品99| 欧美理论电影在线精品| 欧美视频久久| 国产成人夜色高潮福利影视| 日韩精品一区二区三区中文| 亚洲人和日本人hd| 亚洲另类av| 国产一区二区欧美| 欧美猛男同性videos| 成人在线精品| 亚洲精品国产动漫| 日韩欧美中文字幕一区二区三区| 亚洲精品白浆高清| 日韩伦理一区二区三区| 久久69av| 国产精品午夜av| 久久精品二区三区| 在线观看欧美理论a影院| 自拍亚洲一区| 国产亚洲综合精品| 日本一区二区高清不卡| 黄色在线网站噜噜噜| 天堂√8在线中文| 成人四虎影院| 亚洲国产精品一区| 国产亚洲观看| 精品国产亚洲一区二区三区大结局 | 国产+成+人+亚洲欧洲在线| 精品国产91乱码一区二区三区四区| 精品久久久久久久久久久下田 | 日韩欧美黄色| 国产精品欧美大片| 国产91久久精品一区二区| 五月婷婷亚洲| 成人一区而且| 日本一区免费网站| 亚洲精品日韩久久| 日韩成人免费在线| 精品美女视频| 亚洲美女一区| 成人日韩精品| 亚洲国产一区二区三区a毛片| 国产高清视频一区二区| 日韩精品导航| 伊人久久大香线蕉av不卡| 欧美日韩视频一区二区三区| 免费成人在线影院| 精品乱码一区二区三区四区| 亚洲欧美网站在线观看| 五月激激激综合网色播| 成人毛片在线| 免费在线观看日韩欧美| 成人在线黄色| 欧美成人一级| 久久婷婷亚洲| 免费人成精品欧美精品| 福利精品一区| 亚洲免费福利一区| 欧美日韩一二三四| 色婷婷色综合| 亚洲国产精品第一区二区| 日韩欧美另类中文字幕| 亚洲国产精品综合久久久| 国产精品二区不卡| 亚洲日本久久| 成人午夜网址| 免费亚洲电影在线| 亚洲国产片色| 精品无人区一区二区| 蜜桃久久精品一区二区| 久久精品免费观看| 国产精品白浆| 亚洲欧美卡通另类91av| 日韩一区二区三区四区五区| 亚洲婷婷影院| 99在线精品视频在线观看| 国产一区二区三区| 日本一区二区三区电影免费观看| 欧美日韩国产精品一区二区亚洲| 主播大秀视频在线观看一区二区| 欧美黄视频在线观看| 欧美 日韩 国产精品免费观看| 在线精品亚洲欧美日韩国产| 国产精品色婷婷在线观看| 久久精品动漫| 欧美一区二区三区婷婷| 91午夜精品| 色婷婷色综合| 亚洲第一福利专区| 老色鬼久久亚洲一区二区| 亚洲日本国产| 婷婷成人基地| 麻豆视频观看网址久久| 久久久精品五月天| 日韩经典一区| 第九色区aⅴ天堂久久香| 日韩电影一区| 精品一区电影| 日韩精品不卡一区二区| 一区二区网站| 碰碰在线视频| 一区二区免费| 国产v综合v| 国产精品对白久久久久粗| 日韩欧美1区| 欧美顶级毛片在线播放| 亚洲成人不卡| 久久精品福利| 老司机精品视频网| 伊人久久大香线蕉综合网站| 国产精品综合| 免费视频国产一区| 综合视频在线| 国产精品普通话对白| 国产成人3p视频免费观看| 乱码第一页成人| 日韩黄色小视频| 日韩欧美一区二区三区在线视频 | 同性恋视频一区| caoporn视频在线| 亚洲小说春色综合另类电影| 成人av免费电影网站| 精品国产欧美日韩| 一二三区精品| 亚洲精品网址| 国产欧美一区| 新版的欧美在线视频| 精品视频99| 亚洲区第一页| 亚洲综合欧美| 亚洲一区二区免费在线观看| 人人精品久久| 黄页网站一区| 精品视频91| 久久精品国产免费| 亚洲一区二区成人| 日本精品国产| 99精品视频免费全部在线| 狠狠色狠狠色综合日日tαg| 久久成人av| 亚洲成人av观看| 黄色成人在线网站| 久久三级中文| 免费在线播放第一区高清av| 久久亚洲美女| 成人精品影视| 国产九一精品| 日本亚洲欧洲无免费码在线| 亚洲欧洲视频| 精品视频黄色| 国产精品777777在线播放| 亚洲欧美se| 亚洲经典一区| 伊人久久影院| 亚洲影视一区二区三区| 日韩国产一区二区三区| 精品1区2区3区4区| 精品国产123区| 国产中文字幕一区二区三区| www.一区| 久久久久看片|