加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精选视频| 开心激情综合| 免费一二一二在线视频| 色天天色综合| 国产欧美日本| 另类中文字幕国产精品| 伊人久久大香线| 久久综合偷偷噜噜噜色| 日日夜夜一区二区| 日本黄色精品| 九九综合九九| 在线观看视频一区二区三区| 亚久久调教视频| 三级电影一区| 婷婷久久一区| 成人自拍在线| 国产一区二区在线观| 日韩三级成人| 在线天堂资源www在线污| 精品一区在线| 国内毛片久久| 亚洲成在人线免费观看| 日本午夜一本久久久综合| 日韩伦理精品| 最新亚洲一区| 在线日韩视频| 欧美中文一区| 日韩三级不卡| 婷婷亚洲成人| 国产不卡一二三区| 欧美日韩综合| 久久精品日产第一区二区| 在线天堂新版最新版在线8| 男人的天堂成人在线| 亚洲欧美一区在线| 久久天天综合| 麻豆国产欧美一区二区三区r| 日韩精品一区二区三区中文 | 五月天av在线| 免费久久99精品国产| 日韩图片一区| 一区视频在线| 五月天综合网站| 图片小说视频色综合| 欧美日韩性在线观看| 欧美男人操女人视频| 永久免费精品视频| 66精品视频在线观看| 美女国产精品久久久| 精品91福利视频| 91成人福利| 精品国产不卡| 久久视频一区| 欧美二区不卡| av成人国产| 久久xxxx| 蜜桃一区二区三区在线观看| 日韩中文字幕不卡| 蜜臀精品久久久久久蜜臀| 视频一区二区三区中文字幕| 水蜜桃久久夜色精品一区的特点 | 嫩草国产精品入口| 99久久久国产精品美女| 欧美亚洲国产一区| 外国成人激情视频| 亚洲制服av| 欧美残忍xxxx极端| 亚洲va中文在线播放免费| 日韩久久99| 国产精品s色| 国产亚洲电影| 中文无码日韩欧| 99精品网站| 一本久道久久久| 高清毛片在线观看| 高清av一区二区三区| 精品久久在线| 国内精品久久久久久久影视蜜臀| 国产精品免费不| 三级欧美日韩| 国产一区日韩一区| 日韩在线卡一卡二| 日韩视频在线观看| 麻豆91在线播放| 日韩av网址大全| 成人三级视频| av不卡在线| 日韩欧美视频在线播放| 麻豆91在线播放免费| 久久97视频| 欧美天天综合| 蜜臀久久99精品久久久久宅男| 国产一区二区三区朝在线观看 | 一区二区三区四区视频免费观看| 国产毛片精品| 中文亚洲免费| 四虎精品在线观看| 欧美精品三级在线| 久久精品官网| 日韩av久操| 欧美日韩国产v| 中文字幕免费精品| 精品视频高潮| 免费在线看一区| 日精品一区二区三区| 日韩欧美中文字幕在线视频 | 日韩一区精品| 国产欧美日本| 亚洲福利免费| 女人高潮被爽到呻吟在线观看| 在线精品一区| 日韩精品一区二区三区免费观影 | 一本久久知道综合久久| 日韩毛片一区| 日韩精品福利一区二区三区| 九一精品国产| 免费污视频在线一区| 日韩在线黄色| 亚洲欧洲日本一区二区三区| 国产精品亚洲成在人线| 日本亚洲天堂网| 亚洲综合精品四区| 日本成人在线一区| 久久黄色影院| 日韩国产一区二区| 日本亚州欧洲精品不卡| 国产亚洲一级| 亚洲日本国产| 99久久99久久精品国产片桃花| 日韩精品91| 日韩视频一二区| 97精品国产| 日本在线中文字幕一区| 国产亚洲一级| 一区二区在线| 一级毛片免费高清中文字幕久久网| 78精品国产综合久久香蕉| av男人一区| 在线中文字幕播放| 亚洲三级av| 成人亚洲欧美| 91欧美极品| 免费污视频在线一区| 精品久久ai| 久久天天久久| 欧美va天堂在线| 日韩精品成人一区二区三区| 99久久影视| 美女视频第一区二区三区免费观看网站| 另类在线视频| 亚洲国产mv| 欧美大人香蕉在线| 亚洲精品激情| 黄色成人在线网址| 欧美大片91| 欧美hentaied在线观看| 精品国产一区二区三区2021| 成人精品久久| 综合中文字幕| 欧美日韩五区| 欧美在线观看视频一区| 日本欧美一区二区| 亚洲国产不卡| 国产精品手机在线播放 | 国产毛片久久| 婷婷综合一区| 国模视频一区| 婷婷综合激情| 国产在线不卡一区二区三区| 日韩专区一卡二卡| 伊人久久噜噜噜躁狠狠躁| 国产亚洲精品精品国产亚洲综合| 久久高清免费| 国产午夜精品一区在线观看| 日本精品黄色| 久久久xxx| 中文不卡在线| 理论片午夜视频在线观看| 加勒比色老久久爱综合网| 日本色综合中文字幕| 免费视频一区二区| 欧美18免费视频| 久久免费视频66| 欧美成人黑人| 女优一区二区三区| 日韩av影院| 日本免费一区二区三区等视频| 国产精品嫩草99av在线| 日韩高清一区| 亚洲区一区二| www.51av欧美视频| 欧美日韩在线观看视频小说| www.久久爱.com| 国产日韩另类视频一区| 在线免费观看日本欧美爱情大片| 日韩成人免费看| 欧美亚洲视频| 天堂中文最新版在线中文| 午夜久久黄色| 成人爽a毛片|