加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MA2552代做、代寫Matlab編程語言

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

−π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ (0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f, an integer m, and the constants

ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

solutions. In that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫CE335編程、代做Python,C++程序設計
  • 下一篇:COMP528代寫、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    美日韩一级片在线观看| 色综合咪咪久久网| 不卡一区2区| 国产精品美女久久久久久不卡| 91亚洲自偷观看高清| 日韩精品一区二区三区免费观看| 亚洲精品字幕| 亚洲优女在线| 国产亚洲综合精品| 精品国精品国产自在久国产应用 | 国产一区二区av在线| 99riav1国产精品视频| 亚洲精品18| 成人在线日韩| 亚洲精品第一| 日韩电影在线视频| 亚洲免费高清| 激情久久综合| 欧美午夜寂寞| 日韩三级精品| 国产成人久久精品一区二区三区| 久久精品72免费观看| 92国产精品| 中文在线а√在线8| 国产视频一区三区| 久久久国产精品入口麻豆| 免费久久99精品国产| 亚洲福利免费| 黑人久久a级毛片免费观看| 亚洲一区二区三区久久久| 久久99久久久精品欧美| 日韩在线短视频| 97视频热人人精品免费| 米奇777在线欧美播放| 欧美女人交a| 欧美成人精品| 在线视频观看日韩| 久久精品欧美一区| 精品久久久久久久| 伊人精品综合| 91成人精品在线| 午夜欧洲一区| 日韩av网站在线观看| 国产精品色婷婷在线观看| 99er精品视频| 精品一区二区三区中文字幕视频 | 51一区二区三区| 亚洲美女炮图| 主播大秀视频在线观看一区二区| 视频在线日韩| 色综合久久久| 欧美mv日韩| 中文在线а√在线8| 日本欧美在线观看| 日韩在线一区二区三区| 亚洲综合欧美| 视频在线观看一区二区三区| 免费成人av在线播放| 免费久久精品视频| 久久久男人天堂| 桃色av一区二区| 欧美亚洲人成在线| 美女一区二区久久| 国产精品大片| 欧美黄色一级| 午夜久久av| 99国内精品久久久久久久| 欧美美女一区| 久久xxxx精品视频| 成人影院天天5g天天爽无毒影院 | 一本色道久久综合亚洲精品高清| 亚洲欧美日韩专区| 九色porny丨首页入口在线| 久久夜夜操妹子| 欧美一级网站| 国产精品美女久久久久久不卡| 久久影院一区二区三区| 久久久精品性| 一本久久知道综合久久| 男男成人高潮片免费网站| 欧美亚洲色图校园春色| 国模 一区 二区 三区| 黑人操亚洲人| 香蕉成人久久| 女人高潮被爽到呻吟在线观看| 麻豆精品蜜桃| 久久精品三级| 亚洲+变态+欧美+另类+精品| 高清日韩中文字幕| 欧洲激情视频| 日本а中文在线天堂| 亚洲国产一成人久久精品| 国产91在线播放精品| 青青青伊人色综合久久| 国产精品一区二区三区av麻| 国产精品一区二区中文字幕| 欧美另类69xxxxx| а√天堂8资源在线| 免费视频一区| 日韩中文字幕| 亚洲成人免费| 热三久草你在线| 国产精品美女午夜爽爽| 国产日韩欧美| 中文字幕av一区二区三区四区| 久久国产影院| 成人影院天天5g天天爽无毒影院| 国产欧美一区二区三区国产幕精品| 久久99精品久久久久久园产越南| 精品久久网站| 国产精品精品国产一区二区| 麻豆精品一区二区三区| 国产精品主播在线观看| 视频一区在线播放| 综合激情一区| 欧洲亚洲一区二区三区| 在线看片福利| 欧美男gay| 99在线|亚洲一区二区| 精品久久毛片| 亚洲乱码一区| 国产h片在线观看| 色综合中文网| 免费精品视频| 你懂的网址国产 欧美| 美女视频黄 久久| 亚洲成人一品| 亚洲激情视频| 久久精品三级| 在线日韩一区| 成人国产精品| 精品福利久久久| 日韩免费av| 精品视频在线观看免费观看| 亚洲资源av| 国产精品chinese| 欧美不卡在线| 日本aⅴ亚洲精品中文乱码| 激情丁香综合| 欧美一区影院| 性欧美xxxx免费岛国不卡电影| 福利一区二区免费视频| 亚洲91久久| 国产乱码精品| 欧美亚洲国产一区| 日本成人在线电影网| 欧美福利影院| 国内精品久久久久久久影视麻豆| 欧美日韩激情在线一区二区三区| 麻豆精品一区二区综合av| 九九综合九九| 最新亚洲国产| 美女黄色成人网| 日韩三级不卡| 日本h片久久| 国产一区日韩欧美| 伊人久久综合网另类网站| 免费久久99精品国产自在现线| 国产毛片一区二区三区| 欧美aaaa视频| 日本电影一区二区| 日韩精品电影一区亚洲| 国产高清一区| 最新亚洲精品| 亚洲天堂手机| 国产99久久| 97精品资源在线观看| av资源中文在线| 97青娱国产盛宴精品视频| 国产日韩视频| 妖精视频成人观看www| 少妇精品久久久一区二区三区| 日韩欧美伦理| 国模一区二区三区| 韩国三级大全久久网站| 色喇叭免费久久综合| 久久青草久久| 欧美三级一区| 欧美香蕉视频| 欧美日韩三区| 亚洲精品福利电影| 1024精品久久久久久久久| 亚洲国产黄色| 手机在线电影一区| 国产精品白浆| 亚洲网色网站| 午夜不卡影院| 午夜电影亚洲| caoporn成人| 亚洲精品欧美| 欧美一级鲁丝片| 黄色日韩精品| 999在线精品| 中文字幕人成人乱码| 精品国产18久久久久久二百| 国产欧美一区二区三区精品酒店| 99国产精品免费视频观看| 久久99青青| 日韩和欧美一区二区| 成人在线电影在线观看视频|