加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做CHC6089、代寫 java/c++程序語言

時間:2023-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯




OBU COMPUTING
Module CHC6089: Machine Learning:  Semester 1, 2023/24
Coursework 1: Experimental Comparison of Different Supervised Machine Learning Algorithms Using UCI Dataset
 
For this coursework 1, you are required to evaluate and compare fivesupervised machine learning algorithms using UCI dataset in Python programming language methods. Every student is expected to have their individual dataset according to their class grouping. This coursework 1 is worth 30% of the module mark.
Learning Outcomes
1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
4. Create solutions to machine learning problems using appropriate software.
Data set
 
This coursework is designed to allow you to work freely and make sure that your report is unique by avoiding collusions.  No two students ought to possess an identical or comparable dataset. Each student will receive a different UCI dataset at random, and you will need to download it from the student website as designated by the module leader. The dataset that you have been given must be used and followed strictly. The purpose of this instruction is to encourage students to work independently, avoid cheating and collusion; any infringement will result in a deduction of twenty points.  
Machine Learning and Evaluation
For this coursework you will evaluate five supervised learningmethods on UCI dataset in Python. The first algorithm is linear regression, second algorithm is logistic regression, third algorithm is neural network, fourth model is decision tree and the fifth model is k-nearest neighbour. 
You may implement these algorithms using the inbuilt classifiers; however you are highly encouraged to implement the functionsyourself to train the classifiers. More so, inbuilt function for error measurement is not allowed.
 
The objective of this coursework is to experimentally investigate which supervised algorithm is best suited for the dataset, and whichparameter values are best. In order to answer this question you need to evaluate the error measurement rate and any other performance evaluation metrics you can provide.
 
Experiments must at least show:
• The training and test error for all the models.
• Develop appropriate data handling code. 
• The use of inbuilt error measurement is not allowed for this coursework.
• Experimentally compare different hyper-parameters.
• Provide a visualization of how data was classified for each method (or parameter value), for example based on a scatter plot of two of the features. You are allowed to utilize any inbuilt visualization routines you like, such as plot, or scatter. 
The entire experiment must be submitted as jupyter notebook script file (.ipynb) from which all results and figures can be reproduced.
 
 
 
Report structure and assessment (30% of module mark)
1) Write a brief introduction that introduces (5%)
a) Provide a brief introduction of the supervised learning problem as it relates to real-life challenges.
b) Give details of the dataset and other information that describe the dataset.
c) Briefly explain the five models as well as possible parameters.
d) Briefly explain how the models can be individually applied to the dataset.
 
2) Realize and describe the experiment that evaluates the error measurement rate for all the models on your specific dataset. Explain the choice (or necessity) of your error measurement method. Make sure you use appropriate illustrations and diagrams as well as statistics. What other evaluation metrics than just theerror measurement method could be important to decide which method is most suited? More so, discuss the result of the chosen evaluate metrics.  (20%)
 
3) Write a brief conclusion on the results. Mention the algorithm that provides the best result and mentioned the hyper-parameters used. Also, provide a comparison of all the model performance results. (5%)
 
Submission
 
Submit your report following the report structure provided above. Include step-by-step descriptions of the tasks you performed and the results obtained during the experiment. Ensure that your report is well-organized, clearly written, and includes all the necessary evaluation metrics and graphs as specified in the coursework requirements. The submission deadline is week 9, November 2023, by 16:00. Late submissions may incur penalties of up to 10 marks reduction, so make sure to plan your work accordingly. Failure to submit your coursework will result to Zero Mark. In the case of exceptional circumstances, contact the Award Administrator in advance.
 
Submission Format:
The coursework assignment submitted should be compressed into a .zip or .rar file, the following files should be contained in the compressed file:
▪ A report as a Microsoft Word document.
   File name format: ‘Student ID_MLCoursework1_Report.docx’
▪ A .zip or .rar file containing the report experiments: all the program’s sources, including the code, graphs, model architecture, results, and diagrams from the experiments. All implementation source code must be submitted as a Jupyter Notebook script (.ipynb) for easy reproducibility. Your final zipped folder should be submitted digitally to the student website.
 請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當(dāng)前頁
  • 上一篇:代寫COMP528、代做 Python ,java 編程
  • 下一篇:COMP24011 代做、代寫 java/Python 程序
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    蜜桃久久av一区| 少妇精品久久久一区二区三区| 狠狠噜噜久久| 日韩欧美中文在线观看| 日韩高清不卡| 国产二区精品| 精品国产乱码久久久久久1区2匹| 日本欧美加勒比视频| av资源中文在线天堂| 成人a'v在线播放| 成人精品毛片| 国产日韩视频在线| 国产日韩欧美一区在线| 91欧美国产| 天天久久综合| 国产香蕉精品| 秋霞午夜一区二区三区视频| 国产aⅴ精品一区二区四区| 国内精品伊人| 丁香六月综合| 成人一二三区| 亚洲一区二区毛片| 羞羞答答成人影院www| 成人在线免费观看视频| 久久av网站| 国产日产一区| 伊人国产精品| 欧美国产免费| 久久中文字幕一区二区三区| 日韩高清在线| 日韩国产在线观看一区| 亚洲福利专区| 99re热精品视频| 日日夜夜精品视频| 午夜日韩影院| 7777精品| 国产精品白丝av嫩草影院| 日本超碰一区二区| 西野翔中文久久精品字幕| 国产成人一区| 亚洲国产最新| 亚洲欧美tv| 日韩二区在线观看| 午夜日韩影院| 国偷自产av一区二区三区| 一区二区三区免费在线看| 日韩在线亚洲| 欧美日韩网址| 精品丝袜久久| 激情综合视频| 伊人成年综合电影网| 国产精品免费看| 久热国产精品| 91综合久久一区二区| 香蕉伊大人中文在线观看| 色综合一本到久久亚洲91| 精品日本视频| 久久精品国产免费看久久精品| 欧美一区二区三区免费看 | 亚洲影院天堂中文av色| 欧美男同视频网| 视频一区日韩精品| 欧洲在线一区| 日韩激情综合| 在线日韩成人| 欧美日韩一区二区综合 | 亚洲一区在线| 日韩深夜福利| 加勒比视频一区| 欧美日韩国产传媒| 男女激情视频一区| 午夜精品成人av| 日韩国产高清在线| 久久综合色占| 麻豆一区二区| 国产深夜精品| 中文字幕这里只有精品| 国产精品一级| 国内不卡的一区二区三区中文字幕 | 六月丁香综合| 欧美a级在线观看| 另类欧美日韩国产在线| 久久综合欧美| 99精品全国免费观看视频软件| 亚洲经典一区| av中文在线资源库| 美女视频黄 久久| 国产欧美日韩精品高清二区综合区| 99久久免费精品国产72精品九九| 欧美综合另类| av资源新版天堂在线| 国产欧美日韩亚洲一区二区三区| 国产一区二区三区不卡视频网站| 精品国产午夜肉伦伦影院| 日韩视频一区二区三区在线播放免费观看| 日韩av二区| 免费在线播放第一区高清av| 日韩成人一区二区三区在线观看| 欧美亚洲国产激情| 蜜桃视频免费观看一区| 国产日韩欧美一区二区三区在线观看 | 欧美激情理论| 国产精品a久久久久| 操欧美女人视频| 亚洲色诱最新| 国产精品亚洲产品| 日韩三级av高清片| 伊人精品成人久久综合软件| 日韩免费高清| 国产精品日本一区二区不卡视频 | 久久精品国产精品青草| 亚洲香蕉视频| www.色在线| 成人亚洲综合| 日韩一区二区三区精品| 欧美日韩精品一本二本三本| 97欧美成人| 成人爽a毛片| 成人影院在线| 欧美女王vk| 国产亚洲激情| 亚洲日韩成人| 蜜桃国内精品久久久久软件9| 精品123区| 黑人久久a级毛片免费观看| 免费xxxx性欧美18vr| 伊人久久综合网另类网站| 国语产色综合| 成人黄色毛片| 久久久久久黄| 精品国产黄a∨片高清在线| 一区二区中文字幕在线观看| 蜜桃视频在线一区| 欧美日韩 国产精品| 欧美天堂亚洲电影院在线观看| 精品乱码一区二区三区四区| 欧美三级午夜理伦三级在线观看 | 日韩精品专区| 亚洲网址在线观看| av资源亚洲| 国产精品99久久免费观看| 国产伦久视频在线观看| 日韩 欧美一区二区三区| 美女久久99| 精品视频一二| 欧美好骚综合网| 免费看一区二区三区| 亚洲欧美小说色综合小说一区| 亚洲国产欧美日韩在线观看第一区| 国产精品日韩久久久| 97久久精品一区二区三区的观看方式 | 综合视频在线| 国产美女一区| 午夜精品福利影院| 少妇淫片在线影院| 精品资源在线| 日韩国产欧美在线观看| 亚洲精品一二三区区别| 2019中文亚洲字幕| 欧美韩日一区| 日本福利一区| 亚洲毛片视频| 国产精品蜜芽在线观看| 亚洲成人黄色| 国产精品久久久一区二区| av成人毛片| 日韩电影免费在线观看网站| 巨胸喷奶水www久久久| 久久久久国内| 91麻豆精品国产综合久久久| 久久久久久久欧美精品| 黄色免费大全亚洲| 麻豆精品国产传媒mv男同| 久久午夜视频| 精品免费在线| 欧美日韩亚洲一区| av免费不卡国产观看| 91精品精品| 国产美女视频一区二区| 日本不卡网站| 激情欧美丁香| 91一区在线| 97人人澡人人爽91综合色| 国产日韩1区| 色乱码一区二区三区网站| 久久久久综合| 久久99精品久久久久久园产越南| 免费在线小视频| 宅男噜噜噜66一区二区| 中文一区二区三区四区| 日本成人中文字幕| 亚洲黄色免费看| 艳女tv在线观看国产一区| 日韩激情欧美| 欧美日韩一区二区国产| 日韩成人影音| 免费在线视频一区| 欧美ab在线视频| 亚洲精品aⅴ| 电影一区中文字幕|