加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:4CCS1CS1代做、代寫c/c++,Python程序
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲国产老妈| 日本亚洲三级在线| 国产精品国产三级国产在线观看| 麻豆视频久久| 久久一区视频| 蜜桃av噜噜一区二区三区小说| 国产精品黄网站| 精品一区二区三区中文字幕视频| 日韩欧美一区二区三区免费观看| 99国产精品私拍| 粉嫩久久久久久久极品| 亚洲乱码久久| 2019年精品视频自拍| 夜夜精品视频| 久久黄色网页| 激情视频亚洲| 国产欧美69| 麻豆91小视频| 欧美午夜三级| 激情aⅴ欧美一区二区欲海潮| 欧美精选一区二区三区| 欧美三级午夜理伦三级中文幕| 欧美日韩91| 久久中文在线| 亚洲高清在线| 欧美日韩五区| 黄视频免费在线看| 国产女优一区| 婷婷久久国产对白刺激五月99| 国产伦理久久久久久妇女| 婷婷五月色综合香五月| 中文字幕一区二区三区久久网站| 欧美一区二区三区久久精品茉莉花| 高潮一区二区| 97精品国产| 国产精品99久久精品| 香蕉久久夜色精品国产| 欧美在线资源| 欧美福利一区| 自拍欧美一区| 小说区图片区色综合区| 久久久精品久久久久久96| 精品大片一区二区| 精品视频高潮| 精品色999| 美女主播精品视频一二三四| 97久久综合精品久久久综合| 91成人午夜| 国产乱人伦丫前精品视频| 亚洲2区在线| 欧美三区不卡| 欧美三级午夜理伦三级小说| 激情小说一区| 久久麻豆精品| 希岛爱理av一区二区三区| 欧美码中文字幕在线| 伊人久久综合影院| 欧美1区2区3区| 亚洲作爱视频| 成人激情在线| 亚洲四虎影院| 国产精品资源| 亚洲影视一区| 日韩电影在线观看一区| 日本一区二区乱| 超碰在线一区| 激情丁香综合| 亚洲欧美日韩国产一区| 人人超碰91尤物精品国产| 两个人看的在线视频www| 日韩国产欧美| 日韩精品久久久久久| 亚洲欧洲专区| 日韩最新av| 久久神马影院| 久久99伊人| 日韩中文字幕高清在线观看| 久久免费影院| 亚洲一区av| av男人一区| 国产国产精品| 久久uomeier| 欧美一级一区| 精品中文字幕一区二区三区四区| 狠狠一区二区三区| 一区久久精品| av资源中文在线| 国产欧美一级| 日韩福利电影在线| 在线日韩欧美| 波多野一区二区| 麻豆久久久久久| 麻豆国产一区| 天天精品视频| 日韩一区电影| 国产一区二区三区免费观看在线| 欧美三级午夜理伦三级中文幕| 天天久久综合| 日本中文字幕一区二区| 成人国产精品久久| 欧美自拍一区| 首页国产欧美久久| 久久精品国产一区二区| 99re8精品视频在线观看| 精品不卡一区| 欧美残忍xxxx极端| 综合五月婷婷| 美女呻吟一区| 亚洲黄色中文字幕| 宅男噜噜噜66国产精品免费| 91午夜精品| 免费xxxx性欧美18vr| 99精品国产在热久久| 日韩高清在线观看一区二区| 亚洲高清资源在线观看| 性欧美videohd高精| 国产精品久久久久久久久久久久久久久| 97视频一区| 日韩综合网站| 国产高清亚洲| 午夜欧美精品| 亚洲国产二区| 成人在线免费视频观看| 国产精品国产一区| 成年永久一区二区三区免费视频| 欧美一级精品| 欧美一级做a| 北条麻妃一区二区三区在线观看| 日本欧洲一区二区| 999精品视频在线观看| 51精产品一区一区三区| 69堂精品视频在线播放| 99久久婷婷国产综合精品青牛牛 | 欧美成a人片免费观看久久五月天| 亚洲小说图片| 在线一区视频| 亚洲精品少妇| 欧美1级日本1级| 日韩高清中文字幕一区| 欧美日韩一二| 国产一区二区三区久久久久久久久| 亚洲成人黄色| 国产精品亚洲一区二区三区在线观看| 日韩精彩视频在线观看| 免费看欧美女人艹b| 国产一区国产二区国产三区| 久久国产福利| 婷婷亚洲成人| 成人片免费看| 成人精品毛片| 免费污视频在线一区| 欧美综合精品| 国产精品夜夜夜| 精品1区2区3区4区| 欧美一级大片在线视频| 国产精品99在线观看| 午夜日韩影院| 青青国产精品| 欧美精品一区二区久久| 午夜天堂精品久久久久| 国产精品婷婷| 日韩黄色一级片| 蜜桃视频www网站在线观看| 精品久久ai电影| 日韩和欧美的一区| 亚洲欧美日韩国产一区| 亚洲精品**不卡在线播he| 黄色aa久久| 欧美日韩水蜜桃| av在线亚洲一区| 蜜桃视频一区二区三区| 欧美久久香蕉| 亚洲区第一页| 蜜臀精品久久久久久蜜臀| 粉嫩久久久久久久极品| 日韩精品欧美精品| 蜜臀久久99精品久久久久久9 | 国产欧美日韩视频在线| 国产v日韩v欧美v| 久久青草久久| 国产美女视频一区二区| 日产精品一区二区| 99久久婷婷国产综合精品电影√| 在线观看视频免费一区二区三区| 亚洲女人av| 欧美五码在线| 99久久这里有精品| 神马午夜在线视频| 性欧美69xoxoxoxo| 视频二区欧美| 亚洲久久一区| 水蜜桃在线视频| 伊人久久婷婷| 第一区第二区在线| 综合久久av| 日本在线一区二区| av资源中文在线天堂| 图片区亚洲欧美小说区| 精品91福利视频| 国内自拍一区|