加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BUSS6002代做、代寫Python語言編程
BUSS6002代做、代寫Python語言編程

時間:2025-06-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BUSS6002 Assignment
Semester 1, 2025
Instructions
• Due: at 23:59 on Friday, May 23, 2025 (end of week 12).
• You must submit a written report (in PDF) with the following filename format, replacing
STUDENTID with your own student ID: BUSS6002 STUDENTID.pdf.
• You must also submit a Jupyter Notebook (.ipynb) file with the following filename format,
replacing STUDENTID with your own student ID: BUSS6002 STUDENTID.ipynb.
• There is a limit of 6 A4-pages for your report (including equations, tables, and captions).
• Your report should have an appropriate title (of your own choice).
• Do not include a cover page.
• All plots, computational tasks, and results must be completed using Python.
• Each section of your report must be clearly labelled with a heading.
• Do not include any Python code as part of your report.
• All figures must be appropriately sized and have readable axis labels and legends (where
applicable).
• The submitted .ipynb file must contain all the code used in the development of your report.
• The submitted .ipynb file must be free of any errors, and the results must be reproducible.
• You may submit multiple times but only your last submission will be marked.
• A late penalty applies if you submit your assignment late without a successful special con sideration (or simple extension). See the Unit Outline for more details.
• Generative AI tools (such as ChatGPT) may be used for this assignment but you must add a
statement at the end of your report specifying how generative AI was used. E.g., Generative
AI was used only used for editing the final report text.
• Hint! It is highly recommended that you finish the week 10 tutorial before starting this
assignment.
1
Description
The VIX Index, often called the “fear gauge”, measures the market’s expectations of near-term
volatility based on S&P 500 option prices. Predicting the VIX index is useful because it helps
investors anticipate market volatility and manage risk more effectively in their investment strate gies. In this assignment, you are conducting a study that compares the predictive performance
between four families of basis functions: piece-wise constant, piece-wise linear, radial, and Laplace,
for a linear basis function (LBF) model designed to predict the VIX index value. The aim is to
investigate which family of basis functions is most suited for modelling the relationship between
time and volatility (measured by VIX).
You are provided with the VIX dataset, which is widely used in financial market research. The
dataset contains 8,920 observations of daily VIX values (vix) from 1990 to 2025. It also contains
the year (year) for which the value is observed. A scatter plot of the dataset is shown in Figure 1.
Figure 1: VIX levels from 1990 to 2025.
The specific LBF model being considered in your study is given by
y = ϕ(x)
⊤β + ε,
where y is the VIX value, x is year, and ε is a random noise; ϕ(x) denotes the vector of basis
function values; the parameter vector to be estimated is β. Four families of basis functions are
considered for computing ϕ(x); the first family is the set of piece-wise constant basis functions
ϕ(x) := [1, γ1(x), . . . , γk(x)]⊤, with
γi(x) := I(x > ti),
where I(x > ti) is an indicator function defined by
I(x > ti) := ( 1 if x > ti
0 if x ≤ ti
.
The break points {ti}
k
i=1 are calculated according to
ti
:= xmin +
i(xmax − xmin)
k + 1
, (1)
2
where xmin and xmax denote the smallest and largest observed values of x, respectively. The second
family is the set of piece-wise linear basis functions ϕ(x) := [1, x, λ1(x), . . . , λk(x)]⊤, with
λi(x) := (x − ti)I(x > ti),
where ti
is given by Equation (1). The third family is the set of radial basis functions ϕ(x) :=
[1, ρ1(x), . . . , ρk(x)]⊤, with
ρi(x) := exp  −
(x −
8
ti)
2
,
where ti
is given by Equation (1). The final family is the set of Laplace basis functions ϕ(x) :=
[1, τ1(x), . . . , τk(x)]⊤, with
τi(x) := exp  −
|x −
8
ti
|

,
where ti
is given by Equation (1).
Before comparing the four basis function families, you must set the number of components k
for all models. This hyperparameter value for each basis function family should be selected using
a validation set, by minimising the validation mean squared error (MSE).
You should select the optimal values of k by exhaustively searching through an equally-spaced
grid from 1 to 30, with a spacing of 1:
K := {1, 2, . . . , 30}.
Once the optimal values of the hyperparameters are chosen for all basis function families, you will
be able to compare the predictive performance between the four using a test set (i.e., by comparing
the test MSE between the four optimally selected models).
3
Report Structure
Your report must contain the following four sections:
Report Title
1 Introduction (0.5 pages)
– Provide a brief project background so that the reader of your report can understand
the general problem that you are solving.
– Motivate your research question.
– State the aim of your project.
– Provide a short summary of each of the rest of the sections in your report (e.g., “The
report proceeds as follows: Section 2 presents . . . ”).
2 Methodology (2 pages)
– Define and describe the LBF model.
– Define and describe the four choices of basis function families being investigated.
– Describe how the parameter vector β is estimated given the value of the hyperparameter
k. Discuss any potential numerical issues associated with the estimation procedure.
– Describe how the hyperparameter value can be determined automatically from data (as
opposed to manually setting the hyperparameter to an arbitrary value).
– Describe how the performance of the four families of basis functions is compared given
the optimal hyperparameter value.
3 Empirical Study (2.5 pages)
– Describe the datasets used in your study.
– Present (in a table) the selected hyperparameter value for each basis function family.
– Describe and discuss the table of selected hyperparameters.
– Visually present (using plots) the predicted response values for each basis function
family in the test set.
– Describe and discuss the plots of predicted values.
– Present (in a table) the test MSE values for each basis function family.
– Describe and discuss the table of test MSE values.
– Report the VIX forecasts of 2026, 2027, and 2028, given by the model with the smallest
test MSE. Include a brief description of how these forecasts are obtained.
4 Conclusion (0.5 pages)
– Discuss your overall findings / insights.
– Discuss any limitations of your study.
– Suggest potential directions of extending your study.
4
Rubric
This assignment is worth 30% of the unit’s marks. The assessment is designed to test your compu tational skills in implementing algorithms and conducting empirical experiments, as well as your
communication skills in writing a concise and coherent report presenting your approach and results.
The mark allocation across assessment items is given in Table 1.
Assessment Item Goal Marks
Section 1 Introduction 4
Section 2 Methodology 10
Section 3 Empirical Study 16
Section 4 Conclusion 3
Overall Presentation Clear, concise, coherent, and correct 5
Jupyter Notebook Reproducable results 2
Total 40
Table 1: Assessment Items and Mark Allocation
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:FIT2004代寫、代做FIT2004語言編程
  • 下一篇:HydroGroove回歸:2025年6月AquaPlanet波浪池DJ陣容
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品成人| 欧美激情在线精品一区二区三区| 999视频精品| 久久久亚洲欧洲日产| 水蜜桃精品av一区二区| 国产精品久久久网站| 日本视频一区二区三区| 蜜桃视频免费观看一区| 欧美成人一区在线观看| 中文字幕av亚洲精品一部二部| 日韩成人精品一区| 亚洲第一毛片| 日韩电影一区二区三区四区| 亚洲国产mv| 三上亚洲一区二区| 亚洲高清久久| 精品久久免费| 欧美精品1区| a屁视频一区二区三区四区| 久久高清一区| 亚洲午夜av| 国产精品调教视频| 亚洲a级精品| 欧美一区国产在线| 伊伊综合在线| 美女91精品| 欧美在线网址| 99视频精品全部免费在线视频| 日韩电影在线一区| 欧美精品91| 国产日韩欧美一区在线| 日韩免费视频| 视频一区在线视频| 午夜精品网站| 欧美大片专区| 99精品电影| 精品国产网站 | 亚洲毛片免费看| 麻豆精品久久久| 亚洲国产高清一区| 欧美视频免费看| 日韩在线精品| 黄色在线观看www| 久久久久久网| 蜜桃精品视频在线| 老妇喷水一区二区三区| 在线国产一区二区| 九色精品91| 欧美1区2区视频| 免费久久久久久久久| 国模一区二区三区| 欧美中文一区二区| 91精品国产91久久久久久黑人| 加勒比色老久久爱综合网| 丁香综合av| 精品高清在线| 久久精品在线| 久久一区二区三区电影| 欧美激情第二页| 国产国产精品| 国产农村妇女毛片精品久久莱园子 | 香蕉久久国产| 蜜桃精品视频在线观看| 欧美国产美女| 91av亚洲| 国产欧美一区二区色老头| 香蕉久久一区| 麻豆精品久久久| 成人精品在线| 日韩av中文字幕一区二区| 伊人精品综合| 秋霞影院一区二区三区| 天天躁日日躁狠狠躁欧美| 特黄特色欧美大片| 亚洲香蕉网站| 老司机一区二区三区| 精品国产免费人成网站| 九九色在线视频| 99精品视频免费| 国产一区二区视频在线看| 日本一区二区三区视频在线看| 韩国精品福利一区二区三区| 久久一区二区三区电影| 99热精品在线观看| 日本精品黄色| 99精品在免费线偷拍| 一区二区电影在线观看| 日韩一级电影| 久久美女视频| 免费成人美女在线观看| 91av一区| 国产精品亚洲一区二区在线观看 | 伊人久久大香| 国语一区二区三区| 自拍视频亚洲| 日韩欧美高清| 91麻豆精品国产91久久久更新资源速度超快| 少妇一区二区视频| 美女福利一区| 老妇喷水一区二区三区| 精品国模一区二区三区| 影音先锋久久资源网| 日本午夜精品久久久| 三级小说欧洲区亚洲区| 免费精品视频| 福利一区二区免费视频| 亚洲日产av中文字幕| 99精品在线| 四季av一区二区三区免费观看| 欧美在线三区| 国产情侣一区在线| 很黄很黄激情成人| 欧美gv在线观看| www久久久| 国产主播一区| 免费在线小视频| 欧美一级大片在线视频| 久久人人97超碰国产公开结果| 蜜臀久久99精品久久久久宅男| 欧美一级一区| 激情亚洲另类图片区小说区| 久久国产精品毛片| 久久精品女人天堂| 福利在线一区| 97精品国产一区二区三区| 伊人久久精品| 免费视频国产一区| 日韩av一级| 日本一区二区三区视频在线看 | 亚洲影视一区二区三区| 成人羞羞视频播放网站| 国产在线美女| 西野翔中文久久精品字幕| 中文在线一区| 亚洲麻豆一区| 欧美在线色图| 久热成人在线视频| 精品国产中文字幕第一页 | 香蕉视频亚洲一级| 日韩人体视频| 免费成人av在线| 国产永久精品大片wwwapp| 最新成人av网站| 日韩国产高清在线| 99欧美视频| 精品久久99| 一区二区三区四区在线看| 久久精品72免费观看| 久久久精品午夜少妇| 百度首页设置登录| 欧美视频二区| 欧美伊人亚洲伊人色综合动图| 成人在线免费视频观看| 日韩国产一区| 精品国产精品久久一区免费式| av成人在线观看| 久久久夜精品| 日本成人在线一区| 狠狠色丁香久久综合频道| 麻豆国产精品777777在线| re久久精品视频| 欧美日韩一区自拍| 免费欧美在线| 九九九九九九精品任你躁| 正在播放日韩精品| 一区二区三区亚洲变态调教大结局| 日韩成人av电影| 亚洲v在线看| 亚洲综合激情在线| 蜜桃伊人久久| 91精品久久久久久综合五月天| 日韩精品91| 99国产精品免费视频观看| 青青草一区二区三区| **女人18毛片一区二区| 国产精品www994| 国产精品成久久久久| 精品久久成人| 麻豆精品精品国产自在97香蕉| 蘑菇福利视频一区播放| 麻豆一区在线| 日韩国产欧美视频| 首页欧美精品中文字幕| 极品尤物一区| 亚洲国产清纯| 色一区二区三区| 激情综合自拍| 精品中文在线| 国产欧美一区二区三区国产幕精品| 99亚洲视频| 亚洲视频一起| 亚洲精品日本| 亚洲精华液一区二区三区| 欧美91福利在线观看| 亚洲精品3区| 久久精品999| 97精品国产福利一区二区三区| 国内精品视频在线观看| 国产成人三级| 国产精品久久久久9999高清|