加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BISM3206代做、代寫Python編程語言
BISM3206代做、代寫Python編程語言

時間:2025-06-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


O-BISM3206 ver or Under Asking -BISM3206

Classifying Property

Price Outcomes in the

Australian Market

  
BISM3206 Assignment

2025 S1 – Assignment

Context

The Australian real estate market is one of the most dynamic and competitive in the world, offering a

wide range of properties to both buyers and sellers. For homeowners looking to sell, setting the right

price is a critical, and often emotional, decision. After all, property transactions are among the most

significant financial events in a person's life.

Sellers typically set a listing price based on what they believe their home is worth and what the market

might bear. But things don’t always go as planned. Some properties attract intense buyer interest and

sell for more than the asking price. Others fall short, forcing the seller to accept less than they’d hoped.

If sellers had a way to estimate in advance whether their listed price is likely to be exceeded or undercut,

they could make more informed pricing decisions, better manage expectations, and potentially

maximize their return.

In this assignment, your task is to build a binary classification model that predicts whether a property

will be sold at a higher or lower price than the advertised price set by the seller.

Target Variable

The target variable price_outcome indicates whether a property was sold at a higher, equal or lower

price compared to the listing price.

The values in the price_outcome column are:

 Higher: Sold price is greater than the listed price

 Equal: Sold price is the same as the listed price

 Lower: Sold price is equal to or less than the listed price

This is a binary classification problem; therefore, you should not include any data where the target

value is ‘Equal’. Your model should learn to predict this outcome using the available features of each

property outlined below.

Dataset

You are provided with a dataset of 6,957 recently sold properties, between February 2022 and February

2023. The predictor variables are:

1. property_address: the address of the property

2. property_suburb : The suburb the property resides in

3. property_state : The state which the property resides in

4. listing_description: The description of the house provided on the listing

2025 S1 – Assignment

5. listed_date: The date the property was listed for sale

6. listed_price: The 代寫BISM3206 ver or Under Asking -BISM3206price the property was listed for

7. days_on_market: The number of days the property was on the market

8. number_of_beds: The number of bedrooms on the property

9. number_of_baths: The number of bathrooms on the property

10. number_of_parks: The number of parking spots on the property

11. property_size: The size of the property in square meters

12. property_classification: The type of property (House/Unit/Land)

13. property_sub_classification: The sub-type of the property

14. suburb_days_on_market: The average days in market that a property is on sale for in a suburb

15. suburb_median_price: The average median property price in a suburb

  
Deliverables

You must submit the following:

1. A written report (via TurnItIn).

2. A Jupyter Notebook (via the Assignment Submission link).

Your report may be structured as:

 Four main sections: a) Introduction, b) Model Building, c) Model Evaluation, d) Findings &

Conclusion, or

 Three main sections: 1) Introduction, 2) Model Building & Evaluation, 3) Findings &

Conclusion

Both structures are acceptable.

Visuals & Output

 You may include up to 8 charts or tables in your report.

 All visuals must be supported by the analysis in your Jupyter Notebook.

 Your notebook must run without errors — only analysis up to the last successfully run cell will

be marked.

 Do not edit the original Assignment_Data.xlsx file before importing.

Formatting and professionalism

 Maximum 1500 words (+/- 10%) – including title page, charts and tables.

 Use formal language and full sentences (no bullet points).

 Times New Roman, 12pt font, single-spaced.

 No appendices allowed.

 Reports can be written in first person if preferred.

Submission

Submit two files with the following naming convention:

StudentID.pdf and StudentID.ipynb

 Written report: via TurnItIn (PDF or DOCX format only)

2025 S1 – Assignment

 Jupyter Notebook: via Assignment Submission link

Example: If your student ID is 12345678, submit:

 12345678.pdf

 12345678.ipynb

Do not zip your files.

  
Note on Academic Integrity

This is an individual assignment. You are encouraged to discuss ideas with your peers but must submit

your own work. Suspected plagiarism or collusion will be treated in line with university policy.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:宜卡花唄官網客服電話全面升級,宜卡花唄以AI技術重塑金融服務體驗新標桿
  • 下一篇:代做159.342 、代寫Operating Systems 編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    一区二区高清| 蜜桃一区二区三区在线| 电影一区二区三区久久免费观看| 成人激情诱惑| 国产伊人精品| 美国十次综合久久| 久久人人爽人人爽人人片av不| 日韩在线a电影| 亚洲第一在线| 美女国产精品久久久| 欧美黄色aaaa| 午夜av成人| 久热综合在线亚洲精品| 久久精品主播| 日韩有码av| 老司机免费视频一区二区三区| 日本蜜桃在线观看视频| 亚洲综合丁香| 在线日韩中文| 精品国产网站| 精品久久久久久久久久岛国gif| 国产精品草草| 日韩一级视频| 午夜欧美巨大性欧美巨大| 鲁大师影院一区二区三区| re久久精品视频| 久久久久美女| 欧美日韩夜夜| 丁香五月缴情综合网| 日韩成人在线观看视频| 国内精品久久久久久久影视简单 | 日本不卡的三区四区五区| 日韩av福利| 黄色亚洲网站| 成人精品视频| 石原莉奈在线亚洲三区| 夜夜嗨一区二区三区| 欧美最新另类人妖| 亚洲特色特黄| 亚洲福利国产| 99久久精品网| 精品国内自产拍在线观看视频 | 久久99国产精品久久99大师| 日本在线成人| 一区二区三区四区精品视频 | 国产美女精品视频免费播放软件| 欧美在线黄色| 另类一区二区三区| 久久精品xxxxx| 国产福利91精品一区二区| 日韩毛片网站| 日本中文字幕视频一区| 欧美一区免费| 麻豆精品国产传媒mv男同| 久久精品网址| 久久人人爽人人爽人人片av不| 亚洲精品女人| 国产高清日韩| 日日夜夜精品视频| 精品中国亚洲| 一区二区三区视频免费观看| 希岛爱理av一区二区三区| 91久久高清国语自产拍| 在线综合亚洲| 欧美jizz| 国产成人77亚洲精品www| 美女视频黄久久| 中文无码久久精品| 日韩 欧美一区二区三区| 91午夜精品| 激情文学一区| 国产精品美女| 久草在线资源站手机版| 欧美综合影院| 99re8精品视频在线观看| 精品三级国产| 亚洲大片在线| 老司机久久99久久精品播放免费| 国产精品久久天天影视| 亚洲成人1区| 欧美日韩综合| 日韩欧美高清一区二区三区| 欧美18免费视频| 伊人成人在线视频| 狠狠躁少妇一区二区三区| 福利一区二区三区视频在线观看| 日本午夜精品视频在线观看 | 精品国产影院| 一区在线免费观看| 日韩精品诱惑一区?区三区| 美日韩一区二区| 国产欧美日韩免费观看| 乱亲女h秽乱长久久久| 夜夜嗨av一区二区三区网站四季av| 欧美国产偷国产精品三区| 亚洲国产高清视频| 亚洲伊人春色| 婷婷亚洲综合| 精品成人av| 亚洲综合图色| 一区在线视频| 久久国产人妖系列| 国模吧精品视频| 亚洲午夜av| 香蕉成人av| 国产亚洲一区| 在线电影一区二区| 欧美aaa视频| 日韩丝袜视频| 国产视频一区三区| 日本中文字幕视频一区| 日韩激情av在线| 怡红院精品视频在线观看极品| 国产亚洲一区二区手机在线观看| 国产欧美欧美| 欧美在线亚洲| 欧美成人一二区| 亚洲高清999| 男女男精品网站| 亚洲人体在线| 91精品高清| 国产欧美一区二区色老头 | 亚洲国产高清一区| 亚洲图色一区二区三区| 媚黑女一区二区| 久久久久影视| 国产二区精品| 99精品免费视频| 色爱综合av| 91av一区| 色爱av综合网| 国产一区二区三区国产精品| 1204国产成人精品视频| 三级电影一区| 欧美日韩123| 日韩中文欧美在线| 国产精品手机在线播放| 国产农村妇女精品一区二区| 日本成人超碰在线观看| 免费av一区| 欧美在线国产| 五月天综合网站| 裸体一区二区三区| 欧美日韩国产传媒| 日本不卡中文字幕| 日韩视频二区| 国产精品亚洲欧美日韩一区在线 | 午夜欧美巨大性欧美巨大| 999在线精品| 日本在线中文字幕一区二区三区| 中文字幕一区二区三区日韩精品| 中文在线8资源库| 综合伊人久久| 国产精品天堂蜜av在线播放 | 日韩精品一区二区三区中文字幕| av日韩中文| 国产精品久久久久av蜜臀| 四虎国产精品永久在线国在线| 久久婷婷久久| 麻豆精品视频在线| 香蕉久久a毛片| 日韩理论电影中文字幕| 日韩国产欧美| 91精品国产福利在线观看麻豆| 欧美激情三区| 亚洲欧美日韩国产一区| 亚洲制服欧美另类| 少妇一区视频| 偷拍欧美精品| 天美av一区二区三区久久| 日韩成人三级| 国产国产精品| 日韩av一区二区三区四区| 日韩精品影院| 91久久电影| 日韩高清在线观看一区二区| 中文字幕系列一区| 亚洲欧洲日本mm| 91嫩草精品| 欧美日本中文| 六月婷婷综合| 欧美伦理在线视频| 五月综合久久| 美女久久久久久| 久久夜色精品| 久久久精品性| 国产精品1区在线| 91大神在线观看线路一区| 一本久久综合| 激情小说亚洲色图| 国内不卡的一区二区三区中文字幕 | 日本在线成人| 欧美日韩一卡| 日本成人一区二区| 久久国产福利| 亚洲午夜电影| 91蜜桃臀久久一区二区| 久久久久影视| 国产第一亚洲| yellow在线观看网址|