加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

ECE371編程代做、代寫Python程序設(shè)計(jì)
ECE371編程代做、代寫Python程序設(shè)計(jì)

時(shí)間:2025-05-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CPT206代做、代寫Java編程語言
  • 下一篇:CSC1002代寫、代做Python編程設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    国产中文在线播放| 丝袜国产日韩另类美女| 免费精品视频最新在线| 欧美成人毛片| 深夜福利一区| 免费av成人在线| 欧美国产中文高清| 一本久久知道综合久久| 日韩高清不卡一区| 亚洲国产综合在线看不卡| yy6080久久伦理一区二区| 日韩中出av| 国产精品久久久久久久久久10秀| 捆绑调教美女网站视频一区| 精品欠久久久中文字幕加勒比| 国产精品精品| 久久精品国产亚洲a| 国内视频在线精品| 亚洲爱爱视频| 蜜臀av一区| 一区二区91| 亚洲男女av一区二区| 麻豆精品视频在线观看| 欧美 日韩 国产 一区| 欧美在线三级| 91九色精品国产一区二区| 一区二区三区国产在线| 欧美一级精品| 亚洲理伦在线| 亚洲综合社区| 日韩三级毛片| 性欧美freesex顶级少妇| 国产成人精品亚洲线观看| 欧美综合社区国产| 亚洲福利一区| 中文在线日韩| 免费不卡在线观看| 亚洲精品视频一二三区| 成人国产精品| 欧美日韩国产色综合一二三四| 亚洲日本成人| 石原莉奈一区二区三区在线观看| 久久精品九色| 中文字幕日本一区二区| 久久精品在线| 韩日一区二区| 图片小说视频色综合| 综合久久伊人| 亚洲小少妇裸体bbw| 亚洲手机在线| 午夜先锋成人动漫在线| 久久天堂av| 欧美天堂亚洲电影院在线观看| 国产一区二区三区四区五区传媒 | 丝袜亚洲精品中文字幕一区| 日韩精品导航| 久久一日本道色综合久久| 亚洲自拍另类| 精品国产美女| 国产成人调教视频在线观看 | 国产极品模特精品一二| 日本中文字幕一区| freexxx性亚洲精品| 99久精品视频在线观看视频| 欧洲大片精品免费永久看nba| 欧洲av不卡| 亚洲欧洲一区| 久久久久国内| 日韩av成人高清| 亚洲人妖在线| 亚洲国产尤物| 久久久久久色| 好看不卡的中文字幕| 国产成人在线中文字幕| 成人污污视频| 国产日韩欧美三级| 在线人成日本视频| 伊人久久大香线蕉综合热线| 日韩一级淫片| 亚洲最大黄网| 毛片电影在线| 麻豆精品91| 九九综合在线| 精品三级av| 午夜日韩影院| 国产日产一区 | 精品久久综合| 精品视频一区二区三区| av在线亚洲一区| 久久精品国产一区二区| 国产在线观看www| 亚洲欧美日本视频在线观看| 在线视频观看日韩| 欧美美女黄色| 99re91这里只有精品| 欧美猛男做受videos| 亚洲欧美综合久久久| 日韩精品国产精品| 成人在线观看免费视频| 欧美日韩国产观看视频| 欧美激情777| 石原莉奈在线亚洲二区| 午夜日韩激情| 亚洲精品一区二区在线看| 99久久夜色精品国产亚洲狼| 久久久人人人| 牛牛精品成人免费视频| 精品久久久久久久久久久下田 | 成入视频在线观看| 香蕉国产精品偷在线观看不卡| 精品精品国产三级a∨在线| 日韩欧美中文字幕在线视频 | 伊人久久婷婷| 天天射综合网视频| 自拍亚洲一区| 天天天综合网| 一本久道久久久| 国产精品日韩| 人人精品人人爱| 操人在线观看| 欧美sm一区| 日韩成人在线一区| 欧美影视一区| 一区二区三区无毛| 综合亚洲自拍| 日韩电影在线一区| 国产精品调教| 久久久久久久久久久9不雅视频| 欧美sss在线视频| 日韩精品一区二区三区免费观影 | jvid福利在线一区二区| 国产精品嫩草99av在线| 视频一区二区不卡| 日韩一区二区三区免费播放| 精品日本视频| 另类小说视频一区二区| 国产亚洲久久| 欧美日韩午夜| 99成人在线视频| 青青一区二区三区| 欧美日韩国产高清电影| 午夜在线一区二区| 日韩激情图片| 欧美在线播放| 国产欧美日韩精品一区二区免费| 日韩在线你懂的| 蜜桃一区av| 亚洲黄页一区| 成人福利视频| 麻豆国产一区二区| 日韩avvvv在线播放| 日本久久成人网| 老鸭窝91久久精品色噜噜导演| 在线天堂资源| 日韩精品免费视频人成| 亚洲成aⅴ人片久久青草影院| 欧美交a欧美精品喷水| 伊人激情综合| 亚洲精品在线影院| 国内精品久久久久国产盗摄免费观看完整版| 91精品国产自产观看在线| 欧美视频导航| 亚洲免费成人| 成人一区视频| 偷窥自拍亚洲色图精选| 欧美色图在线播放| 久久久久久婷| 国产日韩欧美一区| 51亚洲精品| 在线一区免费观看| 色男人天堂综合再现| 国产日韩亚洲| 国产日韩一区二区三免费高清 | 日韩中文欧美在线| 日本中文字幕视频一区| 日韩中文字幕在线一区| 黄色一区二区三区四区| 日韩精品第二页| 精品国产亚洲一区二区三区大结局| 亚洲天堂偷拍| 欧洲美女精品免费观看视频| 欧美日韩爱爱| 黄色成人av网站| 一区二区三区四区五区精品视频| 九九99久久精品在免费线bt| 一区福利视频| 日本中文在线一区| 久久精品影视| 日韩不卡在线| 99ri日韩精品视频| av免费不卡国产观看| 中文字幕成人| 9色国产精品| 麻豆精品视频在线观看免费| 91精品国产成人观看| 精品日韩视频| 红杏aⅴ成人免费视频| 黄色成人免费网| 日韩二区三区在线观看| 蜜臀av性久久久久蜜臀av麻豆|