加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫AI3013編程、代做Python設計程序
代寫AI3013編程、代做Python設計程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



AI3013 Machine Learning Course Project
Description:
This is a GROUP project (each group should have 4-6 students), which aims at applying 
machine learning models as well as machine learning techniques (including but not limited 
to those covered in our lectures) to solve complex real-world tasks using Python.
Notice: This project should differ from the one you are undertaking in the Machine Learning 
Workshop Course.
Notice on Deep Learning Models:
You may decide to work on Deep learning models, and since our course mainly focus on 
machine learning models and techniques, deep learning model not be considered as more 
superior than other machine learning models if you just repeat a model that is designed by 
others. Also, training deep learning models can be very time consuming, so make sure you have 
the necessary computing resources.
Project Requirement:
Problem Selection:
• Choose a real-world problem from a domain of interest (e.g., healthcare, finance, 
image recognition, natural language processing, etc.).
• Describe the problem, including data sources and the type of machine learning model 
that will be applied (e.g., regression, classification, clustering, etc.).
Dataset Selection:
• Choose a dataset from public repositories (e.g., UCI Machine Learning Repository, 
Kaggle) suitable for this topic.
• Ensure the dataset has a sufficient number of samples and features to allow for 
meaningful analysis and model comparison.
• Apply appropriate data preprocessing steps (e.g., handling missing values, encoding 
categorical features, scaling).
Model Theory and Implementation:
• Select and implement at least 2 machine learning models for comparison.
• Provide a comprehensive explanation of the theoretical background of the chosen 
models (e.g., loss functions, optimization techniques, and assumptions).
• Discuss the strengths and weaknesses of the chosen models.
• Include mathematical derivations where relevant (e.g., gradient descent for linear 
regression).
• Implement the selected models From Scratch without using any existing machine 
learning libraries (e.g., scikit-learn, TensorFlow, Keras, etc.). The implementation 
should be done in Python using only basic libraries such as NumPy, Pandas, and 
Matplotlib.
Model Evaluation:
• Evaluate each model using suitable metrics (e.g., accuracy, precision, recall, F1 score, 
RMSE) for the problem.
• Use cross-validation to ensure model robustness and avoid overfitting.
• Analyze the behavior of the models based on the dataset, including bias-variance 
trade-offs, overfitting, and underfitting.
Analysis and Comparison:
• Compare the models in terms of:
o Performance (accuracy, precision, etc.).
o Computational complexity (training time, memory usage).
o Suitability for the dataset (e.g., which model performs best, why).
• Provide a comparison of the models' performances with appropriate visualizations 
(e.g., bar plots or tables comparing metrics).
• Discuss how the assumptions of each model affect its suitability for the problem.
Submission Requirement:
Upon completion, each group must submit the following materials:
1. Progress report
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Progress/Current Status
f) Next Steps and Plan for Completion
2. Project report, your report should contain but not limited to the followingcontent:
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Experimental study and result analysis
f) Future work and conclusion
g) References
h) Contribution of each team member
3. Link and description to the Dataset and the implementation code.
4. Your final report should be a minimum of 9 pages and a maximum of 12 pages
5. For the final report, the similarity check Must Not exceed 20%, and the AI generation 
content check Must Not exceed 25%.
6. Put all files (including: source code, presentation ppt and project report) into a ZIP file, 
then submit it on iSpace.
Deadlines:
 Team Information should be submitted by the end of Week 3.
 The Progress Report should be submitted by the end of Week 10.
 The Presentation will be arranged in Weeks 13 and 14 of this semester.
 Final Project Report should be submitted by Friday of Week 15 (May.23.2025).
Assessment:
In general, projects will be evaluated based on:
 Significance. (Did the authors choose an interesting or a “real" problem to work on, or 
only a small “toy" problem? Is this work likely to be useful and/or haveimpact?)
 The technical quality of the work. (i.e., Does the technical material make sense? Are 
the things tried reasonable? Are the proposed algorithms or applications clever and 
interesting? Do the student convey novel insight about the problem and/or algorithms?)
 The novelty of the work. (Do you have any novel contributions, e.g., new model, new 
technique, new method, etc.? Is this project applying a common technique to a well studied problem, or is the problem or method relatively unexplored?)
 The workload of the project. (The workload of your project may depend on but not 
limit to the following aspects: the complexity of the problem; the complexity of your 
method; the complexity of the dataset; do you test your model on one or multiple 
datasets? do you conduct a thorough experimental analysis on your model?)
Evaluation Percentage:
 Progress Report: 5%
 Final Report: 40%
 Presentation: 40% (Each group will have 15-20 minutesfor presentation, and
each student must present no less than 3 minutes)
 Code: 15%
It is YOUR responsibility to make sure:
 Your submitted files can be correctly opened. 
 Your code can be compiled and run. 
Late submission = 0; Plagiarism (cheating) = F

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫APSC 142、代做C/C++程序設計
  • 下一篇:DTS101TC代做、代寫Python語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲欧美日韩国产一区| 亚洲品质自拍| aa级大片欧美三级| 色悠久久久久综合先锋影音下载| 日韩三级成人| 欧美综合二区| 91精品久久久久久久蜜月| 欧美黄色一级| 欧美一区国产在线| 欧美丰满日韩| 亚洲国产成人精品女人| 伊人久久亚洲| 国产精区一区二区| 欧美一区网站| 日韩啪啪电影网| 亚洲一区二区三区四区五区午夜| 精品国产午夜肉伦伦影院| 国产探花一区在线观看| 日韩精品亚洲一区二区三区免费| 超碰在线99| 99视频一区| 成人a'v在线播放| 国产精品宾馆| 日韩精品一区二区三区中文 | 看片网站欧美日韩| 经典三级一区二区| 色135综合网| 中文日韩欧美| 欧美不卡高清| 久久精品1区| 国产毛片久久久| 日韩成人视屏| 欧美片网站免费| 中文字幕乱码亚洲无线精品一区 | 日韩成人一区二区三区在线观看| 国内综合精品午夜久久资源| 久久久免费人体| 国产69精品久久| 日韩国产网站| 久久久人成影片一区二区三区在哪下载| 老司机午夜免费精品视频 | 果冻天美麻豆一区二区国产| 日本一区二区三区电影免费观看 | 国内露脸中年夫妇交换精品| 久久天堂久久| 日韩视频一区二区三区四区| 日本欧美高清| 天堂av一区| 在线综合色站| 99精品国产高清一区二区麻豆| 视频一区日韩精品| 视频在线一区| 精品国产中文字幕第一页| 极品尤物一区| 九色丨蝌蚪丨成人| 久久精品道一区二区三区| 久久国产欧美| 婷婷成人基地| 亚洲一区二区三区高清不卡| 老鸭窝91久久精品色噜噜导演| 美女久久一区| 黄色亚洲网站| 国产成人精品一区二区三区免费| 久久精品国产免费看久久精品| 日韩欧乱色一区二区三区在线| 开心久久婷婷综合中文字幕| 久久精品国产亚洲aⅴ| 亚洲三级网站| 欧美视频二区欧美影视| 日韩av一区二区在线影视| 国产免费av国片精品草莓男男| 综合欧美亚洲| 久久久久欧美精品| 2023国产精品久久久精品双 | 日韩欧美网址| 国产精品综合色区在线观看| 亚洲午夜剧场| 日本一区二区三区视频在线看| 狼人精品一区二区三区在线| 久久香蕉国产| 国产精品视区| 日韩欧美网址| 亚洲精品女人| 色播一区二区| 国产一区日韩一区| 国产精品美女久久久浪潮软件| 欧美韩日一区| 久久这里有精品15一区二区三区| 亚洲日韩中文字幕一区| 91精品啪在线观看国产爱臀| 欧美裸体在线版观看完整版| 免费高清在线一区| 久久久久黄色| 日韩电影在线观看电影| 久久精品免费一区二区三区| 日韩午夜电影| 免费在线观看一区| 国产精品一区免费在线| 精品国产中文字幕第一页 | 麻豆精品在线视频| 日韩高清成人在线| 亚洲国产综合在线看不卡| 热久久久久久久| 美日韩一区二区| 日韩激情一区二区| 91成人影院| 自拍偷自拍亚洲精品被多人伦好爽| 日日摸夜夜添夜夜添亚洲女人| 日韩激情一二三区| 国产农村妇女精品一区二区| 99久久亚洲国产日韩美女| 亚洲a级精品| 黄色不卡一区| 高清av一区| 日韩在线麻豆| 夜夜嗨一区二区| 日日摸夜夜添夜夜添精品视频| 日韩中文字幕无砖| 亚洲一区亚洲| 日本中文一区二区三区| 欧美亚洲色图校园春色| 九色porny自拍视频在线播放| 亚洲网色网站| 成人动漫免费在线观看| 欧美天堂在线| 成人免费在线电影网| 日本一区二区高清不卡| 最新亚洲国产| 日韩视频免费| 欧美精品国产| 欧洲乱码伦视频免费| 97人人做人人爽香蕉精品| 免费一区二区三区在线视频| 蜜桃视频一区| 国产aⅴ精品一区二区三区久久| 香蕉一区二区| 一区二区精品| 亚洲第一区色| 日韩精品乱码av一区二区| 99久久综合| 日韩综合久久| 欧美影院三区| 另类小说一区二区三区| 亚洲天堂激情| 日日欢夜夜爽一区| 亚洲精品国产成人影院| 亚洲毛片视频| 国产亚洲综合精品| 亚洲aa在线| 国产黄大片在线观看| 日韩vs国产vs欧美| 国产精品专区免费| 一区二区三区免费在线看| 日本三级一区| 欧洲亚洲一区二区三区| 久久91视频| 91久久电影| av在线播放一区二区| 丝瓜av网站精品一区二区| 国内精品久久久久久久影视简单| 玖玖在线精品| 国产精品一区二区中文字幕| 日韩欧美精品一区二区综合视频| 久久久久久久久99精品大| 国产精品久久国产愉拍| 免费观看久久av| 国产一区一区| 在线一区av| 久久综合成人| 成人在线精品| 日韩欧美精品综合| 91精品国偷自产在线电影| 日韩国产欧美在线视频| 亚洲深夜福利| 久久久久久久久成人| 欧美极品在线| 亚洲一区成人| 国产精品调教视频| 日韩精品色哟哟| 国产精品久久久久久| 精品三级av| 国产麻豆一区二区三区| 成人av免费电影网站| 免费成人网www| 亚州精品视频| 欧美一区二区| 超碰99在线| 激情五月综合| 9国产精品午夜| 欧美日本不卡| 高清av不卡| 天天操综合网| 国产精品男女| 国产精品羞羞答答在线观看 | a一区二区三区亚洲| 日韩电影二区| 亚洲欧美日韩专区| 亲子伦视频一区二区三区| 国产精品一区二区av交换| 不卡亚洲精品|