加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做COMP9021、Python程序語言代寫
代做COMP9021、Python程序語言代寫

時間:2025-04-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment 1
COMP9021, Trimester 1, 2025
1 General matters
1.1 Aim
The purpose of the assignment is to:
• develop your problem solving skills;
• let you carefully read specifications and follow them;
• let you design and implement the solutions to problems in the form of small sized Python programs;
• let you practice the use of arithmetic computations, tests, repetitions, fundamental Python data
types, Unicode characters;
• have control over print statements.
1.2 Submission
Your programs will be stored in files named solitaire_1.py and solitaire_2.py. After you have devel oped and tested your programs, upload them using Ed (unless you worked directly in Ed). Assignments
can be submitted more than once; the last version is marked. Your assignment is due by March 31,
10:00am.
1.3 Assessment
The assignment is worth 13 marks. It is going to be tested against a number of inputs. For each test, the
automarking script will let your program run for 30 seconds.
Assignments can be submitted up to 5 days after the deadline. The maximum mark obtainable reduces
by 5% per full late day, for up to 5 days. Thus if students A and B hand in assignments worth 12 and 11,
both two days late (that is, more than 24 hours late and no more than 48 hours late), then the maximum
mark obtainable is 11.7, so A gets min(11.7, 12) = 11.7 and B gets min(11.7, 11) = 11.
The outputs of your programs should be exactly as indicated.
1.4 Reminder on plagiarism policy
You are permitted, indeed encouraged, to discuss ways to solve the assignment with other people. Such
discussions must be in terms of algorithms, not code. But you must implement the solution on your
own. Submissions are routinely scanned for similarities that occur when students copy and modify other
people’s work, or work very closely together on a single implementation. Severe penalties apply.
1
2 Decks, shuffling
2.1 Decks
The first exercise simulates a solitaire game that is played with 32 cards, namely, the Ace, Seven, Eight,
Nine, Ten, Jack, Queen and King of each of the 4 suits, with the following convention.
• Numbers from 0 to 7 denote the Hearts, from the Ace of Hearts up to the King of Hearts.
• Numbers from 8 to 15 denote the Diamonds, from the Ace of Diamonds up to the King of Diamonds.
• Numbers from 16 to 23 denote the Clubs, from the Ace of Clubs up to the King of Clubs.
• Numbers from 24 to 31 denote the Spades, from the Ace of Spades up to the King of Spades.
So for instance, 6 denotes the Queen of Hearts, and 26 denotes the Eight of Spades.
The second exercise simulates a solitaire game that is played with 52 cards, with the following convention.
• Numbers from 0 to 12 denote the Hearts, from the Ace of Hearts up to the King of Hearts.
• Numbers from 13 to 25 denote the Diamonds, from the Ace of Diamonds up to the King of Diamonds.
• Numbers from 26 to 38 denote the Clubs, from the Ace of Clubs up to the King of Clubs.
• Numbers from 39 to 51 denote the Spades, from the Ace of Spades up to the King of Spades.
So for instance, 16 denotes the Four of Diamonds, and 36 denotes the Jack of Clubs.
2.2 Shuffling
Both exercises require to shuffle a deck of cards, either the full deck (of 32 or 52 cards) or a subset of the
full deck. For that purpose, the following convention is followed.
By shuffling a deck of cards, we mean randomising the corresponding set of numbers by providing the
list of those numbers, in increasing order, as an argument to the shuffle() function of the random
module. For instance,
• to shuffle the whole deck of 52 cards, we could do
>>> cards = list(range(52))
>>> shuffle(cards)
• and to shuffle the deck of all 52 cards except for the Four of Diamonds and the Jack of Clubs, we
could do
>>> cards = sorted(set(range(52)) - {16, 36})
>>> shuffle(cards)
To make sure that results are predictable, just before calling the shuffle() function, the seed() function
of the random module should be called with a given argument. By shuffling the deck of all (52) cards
with 678 given to seed(), we mean doing something equivalent to:
2
>>> cards = list(range(52))
>>> seed(678)
>>> shuffle(cards)
which by the way, lets cards denote
[11, 12, 22, 38, 15, 16, 14, 28, 4, 34, 46, 48, 33,
18, 5, 17, 27, 37, 50, 51, 31, 41, 9, 1, 39, 3,
29, 40, 43, 23, 25, 13, 19, 35, 26, 42, 24, 32, 44,
45, 6, 36, 8, 47, 2, 30, 10, 49, 21, 0, 20, 7]
3
3 First solitaire game
3.1 Game description
It is played with 32 cards. The aim is to get rid of enough cards and be left with the 4 Aces in sequence,
possibly together with other cards before or after the 4 Aces. Elimination of cards proceeds over 3 stages,
with all cards still in play being distributed over 4 stacks for the first stage, 3 stacks for the second stage,
and 2 stacks for the third and last stage. The cards are shuffled only once, just before the game begins.
At the start of the first stage, the cards in the deck are facing down, so with the first card in the deck
at the bottom and with the last card in the deck at the top, and distributed from the top to the bottom
of the deck over 4 stacks, so the first, second, third and fourth cards at the top of the deck become the
cards at the bottom of the first (leftmost), second, third and fourth (rightmost) stacks, respectively, the
fifth, sixth, seventh and eight cards at the top of the deck become the cards directly above the cards
at the bottom of the first, second, third and fourth stacks, respectively, etc. The first stack is turned
upside down so its cards are now facing up. All cards at the top of the stack are discarded until an Ace is
uncovered, unless there is no Ace in the first stack in which case the whole stack is discarded. If an Ace
has been uncovered then what is left of the stack is turned upside down and then put aside, so with the
Ace now facing down on the table. The same is done with the second, third and fourth stacks, each time
turning what is left of the stack, if anything, upside down and putting it aside above the cards that have
been previously kept, if any.
For the second stage, the same procedure is followed, except that the cards that have been put aside are
distributed over 3 stacks instead of 4. There will be one more card in the first stack than in the third
stack if the number of cards that is left is not a multiple of 3, and there will be one more card in the
second stack than in the third stack if the number of cards that is left is equal to 2 modulo 3. Note that
the last card that is distributed (facing down) is the first Ace that has been uncovered during the first
stage.
The same is done for the third stage, except that the cards that have been put aside are distributed over
2 stacks.
At the end of the third stage, the cards that have been last put aside are taken from top to bottom and
displayed from left to right facing up. The 4 Aces are necessarily all there but the game is won only if
they occur in sequence, without any other card between two of them. Of course if there are only 4 cards
left then the game is known to be won before they are revealed.
3.2 Playing a single game (3.5 marks)
Your program will be stored in a file named solitaire_1.py. Executing
$ python3 solitaire_1.py
at the Unix prompt should produce the following output (ending in a single space):
Please enter an integer to feed the seed() function:
with the program now waiting for your input, which should be an integer, and which you can assume will
be an integer. Your program will feed that integer to seed() before calling shuffle(), as described in
Section 2, to shuffle the deck of 32 cards.
Here is a possible interaction for a game that is lost.
4
Here is a possible interaction for a game that is won.
The output starts with an empty line followed by a line that reads:
Deck shuffled, ready to start!
The next line of output represents the 32 card deck, with all cards facing down (32 ]s). It is followed
with an empty line.
The beginning of the first round is announced by a line that reads:
Distributing the cards in the deck into 4 stacks.
The next two rounds are announced by a line that reads:
Distributing the cards that have been kept into _ stacks.
with _ being 3 for the second round and 2 for the third round. That line is a followed by 5 lines:
• a representation of the stacks that remain, the starts of two adjacent stacks being 12 characters
away;
• an empty line (whose purpose will be explained further down);
• a representation of all cards that have been discarded, facing up, using [ for all of them except for
the last (top) one, that is properly displayed—that line being empty in the first stage;
• an empty line (whose purpose will be explained further down);
• an empty line.
Then, for each stage, the output consists of groups of 12 or 13 lines, each group being structured as
follows.
• The first line in the group reads as one of the following:
– No ace in _ stack, after it has been turned over.
with _ one of first, second, third and fourth, or
– _ [(and last)] card in _ stack, after it has been turned over, is an ace.
with
∗ the first _ one of First, Second, Third, Fourth, Fifth, Sixth, Seventh and Eighth,
∗ the second _ one of First, Second, Third and Fourth,
∗ (and last) added when the card is indeed the last one in the stack.
• The second line in the group depicts the stacks that remain with for the one being processed, what
is left of it after it has been turned upside down and all cards that do not have an Ace above them
have been discarded one after the other; so either there is nothing left of the stack or what is left
has an Ace at the top.
• The third line in the group depicts all cards that have been discarded one after the other from the
stack being processed, with at the top the last card in the stack if no Ace has been found, and the
card just above the Ace that has been found otherwise.
5
• The fourth line in the group depicts the cards that have been discarded up to then, facing up.
• The fifth line in the group depicts the cards that have been put aside up to then, facing down.
• The sixth line in the group is empty.
• In case the card at the top of the stack after it has been turned over is not an Ace, the next line
reads as one of the following:
– Discarding|Adding to the cards that have been discarded all cards in the stack.
or
– Discarding|Adding to the cards that have been discarded the card before the ace.
or
– Discarding|Adding to the cards that have been discarded the _ cards before the ace.
with _ an integer at least equal to 2.
If nothing had been discarded yet, Discarding is used; otherwise, Adding to the cards that have
been discarded is used.
• In case an Ace has been found, the next line reads as one of the following:
– Keeping|Also keeping the ace, turning it over.
or
– Keeping|Also keeping the ace and the card after, turning them over.
or
– Keeping|Also keeping the ace and the _ cards after, turning them over.
with _ an integer at least equal to 2.
If nothing had been put aside yet, Keeping is used; otherwise, Also keeping is used.
• The line that follows depicts the stacks that remain to be processed, if any.
• The line that follows is empty.
• The line that follows depicts the cards that have now been discarded (possibly unchanged).
• The line that follows depicts the cards that have now been put aside (possibly unchanged).
• The last line in the group is empty.
The output ends with a group of 6 lines:
• The first line in the group reads:
Displaying the _ cards that have been kept.
with _ an integer (necessarily at least equal to 4).
• The second line in the group reads: You lost! or You won!
• The next two lines in the group are empty.
• The penultimate line in the group depicts the cards that have been discarded over the game.
• The last line in the group depicts all cards that have been put aside at the end of the game, displayed
facing up next to each other.
Note that there is no tab anywhere in the output and no line has any trailing space.
6
3.3 Playing many games and estimating probabilities (3 marks)
Executing
$ python3
at the Unix prompt and then
>>> from solitaire_1 import simulate
at the Python prompt should allow you to call the simulate() function, that takes two arguments.
• The first argument, say n, is meant to be a strictly positive integer, and you can assume that it is
a strictly positive integer, that represents the number of games to play.
• The second argument, say i, is meant to be an integer, and you can assume that it is an integer.
The function simulates the playing of the game n times,
• the first time shuffling the deck of all cards with i given to seed(),
• if n ≥ 2, the second time shuffling the deck of all cards with i + 1 given to seed(),
• …
• the n
th and last time, shuffling the deck of all cards with i + n − 1 given to seed().
Here is a possible interaction.
Probabilities are computed as floating point numbers and formatted with 2 digits after the decimal point.
Only strictly positive probabilities and the corresponding number of cards left when winning are output
(including the cases, if any, when they are smaller than 0.005%, and so output as 0.00%). The output is
sorted in increasing number of cards left when winning.
There is a single space to the left and to the right of the separating vertical bar, with all lines consisting
of precisely 45 characters.
7
4 Second solitaire game
4.1 Game description
It is played with 52 cards. The Sevens are removed from the deck and placed on the table, facing up,
with from left to right, the Seven of Diamonds, the Seven of Clubs, the Seven of Spades, and the Seven
of Hearts, making sure there is enough space on the table to place above the Sevens all cards from the
Eights up to the Kings, and below the Sevens all cards from the Sixes down to the Aces, with all cards
belonging to the same suit ending up in the same column. Up to 3 stages are allowed to eventually place
all cards. For each stage, all cards that remain are stacked facing down, and the card at the top is taken
off the stack, again and again until there is no card left. A card taken off the top of the stack is placed
at the location where it has to be if the card just above or the card just below in its suit has been placed
already, and in case that is not possible, it is put aside, facing up, above all cards already put aside, if
any. If the card could be placed, we then check whether the card at the top of the cards that have been
put aside, if any, can itself extend the column for its suit, and it if can, place it at the location where it
has to be and again, check the card at the top of the cards that have been put aside, if any, stopping when
there is no card left amongst those that have been put aside or when there are some cards left but the
one at the top cannot extend the column for its suit, at which point we take off the card at the top of the
stack of cards left to process, if any. At the time the stack has become empty, either all cards have been
appropriately placed on the table and the game is won, or there is at least one stage left, in which case
the stack of cards put aside is turned upside down and becomes the stack of cards to process, proceeding
exactly as during the previous stage. So the game is lost if the game is played over 3 stages and not all
cards have been appropriately placed on the table at the end of the third stage. The 48 cards (the whole
deck with all Sevens removed) are shuffled only once, just before the game begins.
4.2 Playing a single game (3.5 marks)
Your program will be stored in a file named solitaire_2.py. Executing
$ python3 solitaire_2.py
at the Unix prompt should produce the following output (ending in a single space)
Please enter an integer to feed the seed() function:
with the program now waiting for your input, which should be an integer, and which you can assume will
be an integer. Your program will feed that integer to seed() before calling shuffle(), as described in
Section 2, to shuffle the 52 cards minus the four Sevens.
The output starts with an empty line followed by
There are _ lines of output; what do you want me to do?
Enter: q to quit
a last line number (between 1 and _)
a first line number (between -1 and -_)
a range of line numbers (of the form m--n with 1 <= m <= n <= _)
with all occurrences of _ denoting the same number. The program should wait for the input on the next
line, aligned under q and the three leftmost as above. Until q is input, the program should output an
8
empty line, do what it is requested to do if the input is correct, output an empty line and prompt the
user again. The program exits when q is input. The input is correct if it is exactly as required, including
integers being within the required ranges (noting that positive numbers should not be preceded with +),
except that there can be any amount of space at the beginning of the input, at the end of the input,
before the first - if entering a range, and after the second - if entering a range (no space between the
minus sign and the digits of a negative number...).
• The first kind of input will let the program output the first n lines of the collected output, with n
being the number provided as input,
• the second kind of input will let the program output the last n lines of the collected output, with
−n being the number provided as input, and
• the third kind of input will let the program output that part of the collected output that ranges
between the mth and n
th lines, mth and n
th lines included, with m and n being the numbers provided
as input.
Here is a possible interaction.
Here is a possible interaction that displays the complete collected output for a game that is lost.
Here is a possible interaction that displays the complete collected output for a game that is won.
When the input is correct, the first line of collected output reads
All 7s removed and placed, rest of deck shuffled, ready to start!
and the second line of collected output represents the 48 cards, with all cards facing down (48 ]s). It
is followed by en empty line (whose purpose will be explained further down), followed by 6 empty lines
to accommodate the Kings, Queens, Jacks, Tens, Nines and Eights. Then comes a line that depicts
the Sevens, followed by 6 empty lines to accommodate the Sixes, Fives, Fours, Threes, Twos and Aces,
followed by an empty line.
The rest of the collected output consists of lines that read
Starting _ round...
with _ being first, or second if there is a second stage, or third if there is a third stage, followed by an
empty line. That is followed by a sequence of lines that are structured as follows.
• First is a line that reads
Cannot place card from top of stack of cards left☹️
or
Cannot place card from top of stack of cards put aside ☹️
or
Placing card from top of stack of cards left ***2;
or
Placing card from top of stack of cards put aside ***2;
• In all cases except for Cannot place card from top of stack of cards put aside ☹️, then comes a line
that depicts the stack of cards that remain to be processed, facing down, followed by a line that
depicts all cards that have been taken off the stack and could not be placed, facing up.
9
• In case a card could be placed, either from the stack of cards left or from the stack of cards put
aside, come the 13 lines for the Kings down to the Aces to display the cards that have been placed
up to now.
• Last comes an empty line.
When Placing card from top of stack of cards left ***2; is used, the stack of cards to process decreases by
one. When Placing card from top of stack of cards put aside ***2; is used, the stack of cards that could
not be placed decreases by one. In both cases, the card that can be placed is displayed at the intended
location. In the first case, the card is ”discovered” as the card just added to those already placed, whereas
in the second case, the card is known since it was facing up and so we know where to look to find it as
the card just added to those already placed.
Cannot place card from top of stack of cards left☹️ is used when a card is taken off the stack to process
and cannot be placed. Cannot place card from top of stack of cards put aside ☹️ is used when a card has
just been placed and the stack of cards that could not be placed is not empty while the card at its top
still cannot be placed. In the first case, that card is “discovered” and becomes the new card at the top of
the stack of cards that could not be placed.
As soon as all cards have been placed, a last line is added to the collected output that reads:
You placed all cards, you won 👍
If there is a third stage and it ends with some cards still waiting to be placed, a last line is added to the
collected output that reads:
You could not place _ cards, you lost 👎
with _ the number of cards that could not be placed.
Each placed card is displayed with the appropriate Unicode character after one, two, three or four
tab characters depending on whether the position of the card on the row is the first, the second, the
third or the fourth, respectively, as determined by its suit, and of course after the Unicode characters for
any preceding card on the row. No line has any trailing space.
4.3 Playing many games and estimating probabilities (3 marks)
Executing
$ python3
at the Unix prompt and then
>>> from solitaire_2 import simulate
at the Python prompt should allow you to call the simulate() function, that takes two arguments.
• The first argument, say n, is meant to be a strictly positive integer, and you can assume that it is
a strictly positive integer, that represents the number of games to play.
10
• The second argument, say i, is meant to be an integer, and you can assume that it is an integer.
The function simulates the playing of the game n times,
• the first time shuffling the deck of all cards with i given to seed(),
• if n ≥ 2, the second time shuffling the deck of all cards with i + 1 given to seed(),
• …
• the n
th and last time, shuffling the deck of all cards with i + n − 1 given to seed().
Here is a possible interaction.
Probabilities are computed as floating point numbers and formatted with 2 digits after the decimal point.
Only strictly positive probabilities and the corresponding number of cards left are output (including the
cases, if any, when they are smaller than 0.005%, and so output as 0.00%). The output is sorted in
decreasing number of cards left.
There is a single space to the left and to the right of the separating vertical bar, with all lines consisting
of precisely 32 characters.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代做CSCI 4211、Python程序語言代寫
  • 下一篇:出評 開團工具
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    中文字幕免费一区二区| 伊人久久大香线蕉综合热线| 美女视频黄 久久| 丝袜诱惑亚洲看片| 99精品国产一区二区三区2021| 久久精品国产精品亚洲红杏| 久热综合在线亚洲精品| 给我免费播放日韩视频| 欧美日韩在线大尺度| 少妇淫片在线影院| 亚洲综合另类| 99热国内精品永久免费观看| 精品网站999| 国内自拍一区| 日本欧美一区| 两个人看的在线视频www| jiujiure精品视频播放| www.豆豆成人网.com| 国产一区不卡| 亚洲视频在线免费| 深夜日韩欧美| 亚洲插插视频| 色喇叭免费久久综合| 一级毛片免费高清中文字幕久久网| 视频一区视频二区欧美| 国产精品1区在线| 麻豆久久久久久| 精品美女一区| 亚洲综合在线电影| 美女91在线看| 免费高清在线视频一区·| 黄色日韩在线| 欧美99在线视频观看| 久久久人人人| 久久久久国内| 精品精品99| 精品国产aⅴ| 2020国产精品极品色在线观看| 国产成人调教视频在线观看| 国产精品s色| 日韩精品电影在线观看| 久色婷婷小香蕉久久| 日本美女久久| 最新日韩一区| 久久久久久一区二区三区四区别墅 | 欧美美女福利视频| 日日av拍夜夜添久久免费| 超碰国产一区| 亚洲国产欧美日本视频| 四季av一区二区三区免费观看| 亚洲资源av| 视频一区在线视频| 热久久免费视频| h片在线观看视频免费免费| 水蜜桃精品av一区二区| 欧美独立站高清久久| 成人免费图片免费观看| 日韩理论电影| 国产成人精选| 久久精品久久精品| 欧美激情视频一区二区三区在线播放 | 久久91超碰青草在哪里看| 国产成人久久精品麻豆二区| 久久激情五月婷婷| 国内在线观看一区二区三区| 疯狂欧洲av久久成人av电影| 午夜精品福利影院| www国产精品| 一呦二呦三呦国产精品| 亚洲激情黄色| 中文在线аv在线| 婷婷精品久久久久久久久久不卡| 久久精品男女| 国产剧情一区| 欧美顶级毛片在线播放| 91精品一区国产高清在线gif | 免费国产亚洲视频| 日本少妇一区| 亚洲精品日韩久久| 少妇精品久久久| 国产成人福利av| av一区二区高清| 欧美激情欧美| 久久精品国产精品青草| 国产精品一线天粉嫩av| 国产精品久久久久av蜜臀| 国产综合亚洲精品一区二| 久热精品在线| 国产一区二区三区久久| 欧美激情在线免费| 久久狠狠婷婷| 色男人天堂综合再现| 日本欧美在线| 日韩系列在线| 91精品观看| 女人高潮被爽到呻吟在线观看| 另类的小说在线视频另类成人小视频在线 | 日韩国产高清在线| 一区三区自拍| 99热免费精品| 欧美日韩尤物久久| 婷婷综合电影| 欧美日韩国产欧| av在线不卡精品| 亚洲精品aaaaa| 性欧美69xoxoxoxo| 亚洲优女在线| 久久综合亚洲| 黄色亚洲在线| 欧美成人毛片| 欧美黑人做爰爽爽爽| 亚洲欧美日韩国产一区| 日本欧美在线| 国产图片一区| 久久爱91午夜羞羞| 国产va免费精品观看精品视频 | 亚洲黄色影片| 久久国产人妖系列| 99久久免费精品国产72精品九九| 亚洲欧美高清| 麻豆免费精品视频| 久久人人88| 91大神在线观看线路一区| 日韩精品免费视频一区二区三区 | 亚洲精品永久免费视频| 欧美日韩一视频区二区| 久久在线免费| 国产一区一一区高清不卡| 偷拍亚洲精品| 美女黄网久久| 综合久久婷婷| 亚洲精品国产首次亮相| 美腿丝袜亚洲一区| 麻豆一区二区麻豆免费观看| 97精品国产一区二区三区| 亚洲妇女av| 石原莉奈一区二区三区在线观看| 国产精品videossex久久发布| 伊人春色精品| 久久一区中文字幕| 天堂综合网久久| 国产精品综合色区在线观看| 麻豆成人入口| 国产精品久久久久9999高清| 99久久激情| 国产日韩一区二区三区在线播放| 香蕉久久精品| 理论电影国产精品| 狠狠干成人综合网| 亚洲精品裸体| 久久成人精品| 精品国产亚洲一区二区三区大结局| 蜜臀99久久精品久久久久久软件| 亚洲精品亚洲人成在线观看| 色一区二区三区四区| 综合激情网...| 亚洲a∨精品一区二区三区导航| 精品久久网站| 国产精品久久久免费| **女人18毛片一区二区| 亚洲中无吗在线| 久久一本综合频道| 日本一区二区三区电影免费观看| 欧美一区久久久| 99精品综合| 欧美久久亚洲| 日韩在线欧美| 欧美va亚洲va日韩∨a综合色| 亚洲三级观看| 色综合五月天| 精品国精品国产自在久国产应用 | 日韩激情视频网站| 中文字幕系列一区| 欧美特黄一级| 日本午夜精品| 成人午夜亚洲| 日韩午夜黄色| 欧美日韩网站| 国内精品久久久久久久影视麻豆| 亚洲欧美日韩国产综合精品二区 | jlzzjlzz亚洲女人| 综合亚洲自拍| 女人高潮被爽到呻吟在线观看| 精品欧美久久| 日日狠狠久久偷偷综合色| 久久精品超碰| 蜜桃久久av一区| 久久一区二区三区电影| 国产精品一区二区精品视频观看| 超碰一区二区| 在线亚洲欧美| 麻豆一区二区| 日韩成人免费电影| 日本成人在线一区| xxxxx性欧美特大| 夜夜精品视频| 91精品一区二区三区综合在线爱| 亚欧日韩另类中文欧美| 欧美黑粗硬大| 亚洲小少妇裸体bbw|