加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

EIE553代做、代寫EIE553程序語言
EIE553代做、代寫EIE553程序語言

時間:2025-03-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



EIE553 Lab 1 1
EIE553 Security in Data Communication
Lab 1: RSA Public-Key Encryption
and Signatures
Report Deadline: 11:59 pm, Mar. 2, 2025 HKT
(Credits: SEED Labs 2.0 by Prof. Du, Wenliang)
1 Overview
RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure 
communication. The RSA algorithm first generates two large random prime numbers, and then use them 
to generate public and private key pairs, which can be used to do encryption, decryption, digital signature 
generation, and digital signature verification. The RSA algorithm is built upon number theories, and it can 
be quite easily implemented with the support of libraries.
The learning objective of this lab is for students to gain hands-on experiences on the RSA algorithm. 
From lectures, students should have learned the theoretic part of the RSA algorithm, so they know math ematically how to generate public/private keys and how to perform encryption/decryption and signature 
generation/verification. This lab enhances student’s understanding of RSA by requiring them to go through 
every essential step of the RSA algorithm on actual numbers, so they can apply the theories learned from 
the class. Essentially, students will be implementing the RSA algorithm using the C program language. The 
lab covers the following security-related topics:
• Public-key cryptography
• The RSA algorithm and key generation
• Big number calculation
• Encryption and Decryption using RSA
• Digital signature
• X.509 certificate
Lab environment: The SEED Lab series (including this one) has been tested on the SEED Ubuntu 20.04
VM. In our lab at CF105, the VM is pre-built and you can connect to it via:
1. Run Hyper-V Virtual Machine Connection
2. Select “SEED Ubuntu 20.04”
EIE553 Lab 1 2
3. Click Start
4. Input username: seed and password: dees
NOTE: The Ubuntu 20.04 VM is not strictly necessary. You can complete or implement the tasks 
below using your preferred IDE (on your own PC) and programming language (though C/C++
is recommended).
NOTE: The PC might REBORN AFTER REBOOT AND SHARED WITH OTHER STUDENTS. 
Save your work in an external drive and back up your files before rebooting or shutting down.
You also can download a pre-built image from the SEED website, and run VM on your own PC.
The setup can be found: https://seedsecuritylabs.org/labsetup.html (for either Intel/Apple/AMD CPU)
How to build SEED VM: https://github.com/seed-labs/seed-labs/blob/master/manuals/vm/seedvm-from scratch.md
A step-by-step guideline (prepared by TAs) on how to build SEED VM on a Windows PC has been 
uploaded to Blackboard for your reference.
2 Background
The RSA algorithm involves computations on large numbers. These computations cannot be directly con ducted using simple arithmetic operatorsin programs, because those operators can only operate on primitive 
data types, such as 32-bit integer and 64-bit long integer types. The numbers involved in the RSA algorithms 
are typically more than 512 bits long. For example, to multiple two 32-bit integer numbers a and b, we just
EIE553 Lab 1 3
// Assign a value from a decimal number string
BN_dec2bn(&a, "12345678901112231223");
// Assign a value from a hex number string
BN_hex2bn(&a, "2A3B4C55FF77889AED3F");
// Generate a random number of 128 bits 
BN_rand(a, 128, 0, 0);
// Generate a random prime number of 128 bits 
BN_generate_prime_ex(a, 128, 1, NULL, NULL, NULL);
void printBN(char *msg, BIGNUM * a)
{
// Convert the BIGNUM to number string 
char * number_str = BN_bn2dec(a);
// Print out the number string 
printf("%s %s\n", msg, number_str);
// Free the dynamically allocated memory 
OPENSSL_free(number_str);
}
need to use a*b in our program. However, if they are big numbers, we cannot do that any more; instead, 
we need to use an algorithm (i.e., a function) to compute their products.
There are several libraries that can perform arithmetic operations on integers of arbitrary size. In this 
lab, we will use the Big Number library provided by openssl. To use this library, we will define each big 
number as a BIGNUM type, and then use the APIs provided by the library for various operations, such as 
addition, multiplication, exponentiation, modular operations, etc.
2.1 BIGNUM APIs
All the big number APIs can be found from https://linux.die.net/man/3/bn. In the following, 
we describe some of the APIs that are needed for this lab.
• Some of the library functions requires temporary variables. Since dynamic memory allocation to cre ate BIGNUMs is quite expensive when used in conjunction with repeated subroutine calls, a BN CTX 
structure is created to holds BIGNUM temporary variables used by library functions. We need to 
create such a structure, and pass it to the functions that requires it.
BN_CTX *ctx = BN_CTX_new()
• Initialize a BIGNUM variable.
BIGNUM *a = BN_new()
• There are a number of ways to assign a value to a BIGNUM variable.
• Print out a big number.
EIE553 Lab 1 4
BN_sub(res, a, b);
BN_add(res, a, b);
/* bn_sample.c */ 
#include <stdio.h>
#include <openssl/bn.h> 
#define NBITS 256
void printBN(char *msg, BIGNUM * a)
{
/* Use BN_bn2hex(a) for hex string
* Use BN_bn2dec(a) for decimal string */ 
char * number_str = BN_bn2hex(a); 
printf("%s %s\n", msg, number_str);
OPENSSL_free(number_str);
}
int main ()
{
BN_CTX *ctx = BN_CTX_new();
BIGNUM *a = BN_new(); 
BIGNUM *b = BN_new(); 
BIGNUM *n = BN_new(); 
BIGNUM *res = BN_new();
• Compute res = a −b and res = a + b:
• Compute res = a ∗b. It should be noted that a BN CTX structure is need in this API.
BN_mul(res, a, b, ctx)
• Compute res = a ∗b mod n:
BN_mod_mul(res, a, b, n, ctx)
• Compute res = ac mod n:
BN_mod_exp(res, a, c, n, ctx)
• Compute modular inverse, i.e., given a, find b, such that a ∗ b mod n = 1. The value b is called 
the inverse of a, with respect to modular n.
BN_mod_inverse(b, a, n, ctx);
2.2 A Complete Example
We show a complete example in the following. The program can be found from the Labsetup.zip file 
that you can download from the lab’s webpage. In this example, we initialize three BIGNUM variables, a, 
b, and n; we then compute a ∗b and (ab mod n).
EIE553 Lab 1 5
$ vim bn_sample.c
$ gcc bn_sample.c -lcrypto -o output
$ ./output
Compilation. We can use the following command to compile bn_sample.c (the character after - is the 
letter £, not the number 1; it tells the compiler to use the crypto library).
Click “Open in Terminal”
Create bn_sample.c file
Paste your code into the file, Press Esc on your keyboard, input “: wq” to save file and quit.
Complie bn_sample.c
Run bn_sample.c
// Initialize a, b, n
BN_generate_prime_ex(a, NBITS, 1, NULL, NULL, NULL); 
BN_dec2bn(&b, "273489463796838501848592769467194369268");
BN_rand(n, NBITS, 0, 0);
// res = a*b 
BN_mul(res, a, b, ctx);
printBN("a * b = ", res);
// res = aˆb mod n 
BN_mod_exp(res, a, b, n, ctx); 
printBN("aˆc mod n = ", res);
return 0;
}
EIE553 Lab 1 6
p = F7E75FDC469067FFDC4E847C51F452DF
q = E85CED54AF57E53E092113E62F436F4F 
e = 0D88C3
$ python3 -c ’print("A top secret!".encode("utf-8").hex())’
4120746f702073656372657421
3 Lab Tasks
NOTE: You must explicitly disclose the use of any GenAI tools (e.g., ChatGPT and DeepSeek) if utilized 
in completing the tasks below.
3.1 Task 1: Deriving the Private Key (20 marks)
Let p, q, and e be three prime numbers. Let n = p*q. We will use (e, n) as the public key. Please 
calculate the private key d. The hexadecimal values of p, q, and e are listed in the following. It should be 
noted that although p and q used in this task are quite large numbers, they are not large enough to be secure. 
We intentionally make them small for the sake of simplicity. In practice, these numbers should be at least 
512 bits long (the one used here are only 128 bits).
Hint: The private key d (which is multiplicative inverse of e mod n) can be computed via the extended Euclidean 
algorithm (introduced in Lecture 4). The pseudocode is
Input: 
 - Public key (N, e)
 - Prime factors p and q of N (N = pq)
Output:
 - Private key d
Steps:
1. Compute ϕ(N) = (p - 1) * (q - 1) // Euler's totient function
2. Use the Extended Euclidean Algorithm to find d such that:
 (e * d) ≡ 1 mod ϕ(N)
Extended Euclidean Algorithm:
 Function ExtendedEuclidean(a, b):
 If b == 0:
 Return (a, 1, 0) // gcd(a, b) = a, and coefficients x = 1, y = 0
 Else:
 (gcd, x1, y1) = ExtendedEuclidean(b, a mod b)
 x = y1
 y = x1 - (a // b) * y1
 Return (gcd, x, y)
3. (gcd, d, _) = ExtendedEuclidean(e, ϕ(N))
4. If gcd != 1:
 Return "No modular inverse exists (e and ϕ(N) are not coprime)"
 Else:
 Ensure d is positive by computing d = d mod ϕ(N)
 Return d
3.2 Task 2: Encrypting a Message (20 marks)
Let (e, n) be the public key. Please encrypt the message "A top secret!" (the quotations are not 
included). We need to convert this ASCII string to a hex string, and then convert the hex string to a BIGNUM 
using the hex-to-bn API BN hex2bn(). The following python command can be used to convert a plain 
ASCII string to a hex string.
SEED Labs 2.0 VM (Ubuntu 20.04.2 LTS):
SEED Labs 1.0 VM (Ubuntu 16.04 LTS):
EIE553 Lab 1 7
n = DCBFFE3E51F62E09CE7032E2677A78946A849DC4CDDE3A4D0CB81629242FB1A5
e = 010001 (this hex value equals to decimal 65537) 
M = A top secret!
d = 74D806F9F3A62BAE331FFE3F0A68AFE35B3D2E4794148AACBC26AA381CD7D30D
C = 8C0F971DF2F3672B28811407E2DABBE1DA0FEBBBDFC7DCB67396567EA1E2493F
$ python3 -c
’print(bytes.fromhex("4120746f702073656372657421").decode("utf-8"))’ 
A top secret!
M = I owe you $2000.
M = Launch a missile.
S = 643D6F34902D9C7EC90CB0B2BCA36C47FA37165C0005CAB026C0542CBDB6802F
e = 010001 (this hex value equals to decimal 65537)
n = AE1CD4DC432798D933779FBD46C6E1247F0CF1****95113AA51B450F18116115
The public keys are listed in the followings (hexadecimal). We also provide the private key d to help 
you verify your encryption result.
Requirement: In your lab report, you should change the message to "Your Name + Student ID" instead of using 
"A top secret!" in the above demo.
3.3 Task 3: Decrypting a Message (20 marks)
The public/private keys used in this task are the same as the ones used in Task 2. Please decrypt the following 
ciphertext C, and convert it back to a plain ASCII string.
You can use the following python command to convert a hex string back to to a plain ASCII string 
(works in both VM versions).
Requirement: In your lab report, you should decrypt the ciphertext of "Your Name + Student ID" instead of 
using "A top secret!" in the above demo.
3.4 Task 4: Signing a Message (20 marks)
The public/private keys used in this task are the same as the ones used in Task 2. Please generate a signature 
for the following message (please directly sign this message, instead of signing its hash value):
Please make a slight change to the message M, such as changing $2000 to $3000, and sign the modified 
message. Compare both signatures and describe what you observe.
Requirement: In your lab report, you should change the message to "Your PolyU email address" instead of 
using "I owe you $2000" in the above demo.
3.5 Task 5: Verifying a Signature (20 marks)
Bob receives a message M = "Launch a missile." from Alice, with her signature S. We know that 
Alice’s public key is (e, n). Please verify whether the signature is indeed Alice’s or not. The public key 
and signature (hexadecimal) are listed in the following:
Suppose that the signature above is corrupted, such that the last byte of the signature changes from 2F 
to 3F, i.e, there is only one bit of change. Please repeat this task, and describe what will happen to the 
verification process.
$ python -c ’print("A top secret!".encode("hex"))’
4120746f702073656372657421
EIE553 Lab 1 8
$ openssl s_client -connect www.example.org:443 -showcerts
Certificate chain
0 s:/C=US/ST=California/L=Los Angeles/O=Internet Corporation for Assigned 
Names and Numbers/OU=Technology/CN=www.example.org
i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 High Assurance
Server CA
-----BEGIN CERTIFICATE-----
MIIF8jCCBNqgAwIBAgIQDmTF+8I2reFLFyrrQceMsDANBgkqhkiG9w0BAQsFADBw 
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
......
wDSiIIWIWJiJGbEeIO0TIFwEVWTOnbNl/faPXpk5IRXicapqiII=
-----END CERTIFICATE-----
1 s:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert SHA2 High 
Assurance Server CA
i:/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert High Assurance
EV Root CA
-----BEGIN CERTIFICATE-----
MIIEsTCCA5mgAwIBAgIQBOHnpNxc8vNtwCtCuF0VnzANBgkqhkiG9w0BAQsFADBs 
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYDVQQLExB3
......
cPUeybQ=
-----END CERTIFICATE-----
3.6 (Optional) Task 6: Manually Verifying an X.509 Certificate (20 marks) (Optional)
In this task, we will manually verify an X.509 certificate using our program. An X.509 contains data about 
a public key and an issuer’s signature on the data. We will download a real X.509 certificate from a web 
server, get its issuer’s public key, and then use this public key to verify the signature on the certificate.
Step 1: Download a certificate from a real web server. We use the www.example.org server in 
this document. Students should choose a different web server that has a different certificate than the 
one used in this document (it should be noted that www.example.com share the same certificate with 
www.example.org). We can download certificates using browsers or use the following command:
The result of the command contains two certificates. The subject field (the entry starting with s:) of 
the certificate is www.example.org, i.e., this is www.example.org’s certificate. The issuer field (the 
entry starting with i:) provides the issuer’s information. The subject field of the second certificate is the 
same as the issuer field of the first certificate. Basically, the second certificate belongs to an intermediate 
CA. In this task, we will use CA’s certificate to verify a server certificate.
If you only get one certificate back using the above command, that means the certificate you get is signed 
by a root CA. Root CAs’ certificates can be obtained from the Firefox browser installed in our pre-built VM. 
Go to the Edit ➔ Preferences ➔ Privacy and then Security ➔ View Certificates. Search 
for the name of the issuer and download its certificate.
Copy and paste each of the certificate (the text between the line containing "Begin CERTIFICATE" 
and the line containing "END CERTIFICATE", including these two lines) to a file. Let us call the first one 
c0.pem and the second one c1.pem.
Step 2: Extract the public key (e, n) from the issuer’s certificate. Openssl provides commands to 
extract certain attributes from the x509 certificates. We can extract the value of n using -modulus. There 
is no specific command to extract e, but we can print out all the fields and can easily find the value of e.
EIE553 Lab 1 9
$ openssl x509 -in c0.pem -text -noout
...
Signature Algorithm: sha256WithRSAEncryption 
84:a8:9a:11:a7:d8:bd:0b:26:7e:52:24:7b:b2:55:9d:ea:30:
89:51:08:87:6f:a9:ed:10:ea:5b:3e:0b:c7:2d:47:04:4e:dd:
...... 
5c:04:55:64:ce:9d:b3:65:fd:f6:8f:5e:99:39:21:15:e2:71: 
aa:6a:88:82
$ cat signature | tr -d ’[:space:]:’
84a89a11a7d8bd0b267e52247bb2559dea30895108876fa9ed10ea5b3e0bc7
......
5c045564ce9db365fdf68f5e****2115e271aa6a8882
Step 3: Extract the signature from the server’s certificate. There is no specific opensslcommand to 
extract the signature field. However, we can print out all the fields and then copy and paste the signature 
block into a file (note: if the signature algorithm used in the certificate is not based on RSA, you can find 
another certificate).
We need to remove the spaces and colons from the data, so we can get a hex-string that we can feed into 
our program. The following command commands can achieve this goal. The tr command is a Linux utility 
tool for string operations. In this case, the -d option is used to delete ":" and "space" from the data.
Step 4: Extract the body of the server’s certificate. A Certificate Authority (CA) generatesthe signature 
for a server certificate by first computing the hash of the certificate, and then sign the hash. To verify the 
signature, we also need to generate the hash from a certificate. Since the hash is generated before the 
signature is computed, we need to exclude the signature block of a certificate when computing the hash. 
Finding out what part of the certificate is used to generate the hash is quite challenging without a good 
understanding of the format of the certificate.
X.509 certificates are encoded using the ASN.1 (Abstract Syntax Notation.One) standard, so if we can 
parse the ASN.1 structure, we can easily extract any field from a certificate. Openssl has a command called 
asn1parse used to extract data from ASN.1 formatted data, and is able to parse our X.509 certificate.
8:d=2 hl=2 l= 3 cons: cont [ 0 ]
10:d=3 hl=2 l= 1 prim: INTEGER :02
13:d=2 hl=2 l= 16 prim: INTEGER
:0E64C5FBC236ADE14B172AEB41C78CB0
... ...
1236:d=4 hl=2 l= 12 cons: SEQUENCE
1238:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
1243:d=5 hl=2 l= 1 prim: BOOLEAN :255
For modulus (n):
$ openssl x509 -in c1.pem -noout -modulus
Print out all the fields, find the exponent (e):
$ openssl x509 -in c1.pem -text -noout
EIE553 Lab 1 10
$ openssl asn1parse -i -in c0.pem -strparse 4 -out c0_body.bin -noout
$ sha256sum c0_body.bin
The field starting from 。 is the body of the certificate that is used to generate the hash; the field starting 
from @ is the signature block. Their offsets are the numbers at the beginning of the lines. In our case, the 
certificate body is from offset 4 to 1249, while the signature block is from 1250 to the end of the file. For
X.509 certificates, the starting offset is always the same (i.e., 4), but the end depends on the content length 
of a certificate. We can use the -strparse option to get the field from the offset 4, which will give us the 
body of the certificate, excluding the signature block.
Once we get the body of the certificate, we can calculate its hash using the following command:
Step 5: Verify the signature. Now we have all the information, including the CA’s public key, the CA’s 
signature, and the body of the server’s certificate. We can run our own program to verify whether the 
signature is valid or not. Openssl does provide a command to verify the certificate for us, but students are 
required to use their own programs to do so, otherwise, they get zero credit for this task.
4 Submission
You need to submit a detailed lab report, with screenshots, to describe what you have done 
and what you have observed. You also need to provide explanation to the observations that
are interesting or surprising. Please also list the important code snippets followed by 
explanation. Simply attaching code without any explanation will not receive credits.
OCTET STRING
OBJECT 
NULL

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:CE 451編程代寫、代做Python語言程序
  • 下一篇:質量流量計的信號輸出方式有哪些?
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    在线男人天堂| 国产精品嫩模av在线| 香蕉视频一区| 一区二区电影| 国产精品不卡| 欧美视频在线观看| 欧美在线免费| 免费看的黄色欧美网站| 一区二区三区四区精品视频| 日韩一区精品| 日韩一级网站| 综合激情网...| 毛片一区二区三区| 日本在线电影一区二区三区| 国产精品超碰| 亚洲精品一级| 欧美xxxx做受欧美护士| 欧美丝袜一区| 久久国产精品美女| 久久精品国产第一区二区三区 | 亚洲3区在线| 成人在线免费视频观看| 欧美国产视频| 男人的天堂成人在线| 精品视频亚洲| 只有精品亚洲| 国产精品天堂蜜av在线播放| 亚洲综合好骚| 天堂资源在线亚洲| 日韩 欧美一区二区三区| 99精品免费视频| 久久久久久网| 伊人成综合网| 九九热播视频在线精品6| 最新亚洲精品| 美女精品一区二区| 神马午夜在线视频| 日韩精品一级中文字幕精品视频免费观看| 动漫视频在线一区| 久久精品国产福利| 九色porny自拍视频在线观看| 亚洲不卡av不卡一区二区| 亚洲桃色综合影院| 亚洲欧洲美洲一区二区三区| 亚洲mmav| 日韩欧美精品| 美国欧美日韩国产在线播放| 国产综合亚洲精品一区二| 亚洲2区在线| 国产精品2区| 欧美日本在线| 日韩高清不卡在线| 日韩免费大片| 成人黄色在线| 91av亚洲| 中文字幕高清在线播放| 石原莉奈在线亚洲二区| 天天精品视频| 精品日韩毛片| 国产综合激情| 日本精品影院| 九色丨蝌蚪丨成人| 精品亚洲免a| 欧美三区不卡| 中文一区二区三区四区| 先锋影音国产精品| 日韩啪啪网站| 亚洲福利天堂| 亚洲人成亚洲精品| 国产日产精品一区二区三区四区的观看方式| 青青草97国产精品免费观看 | 蜜桃视频一区| 男人的天堂成人在线| 国产亚洲精品自拍| 久久福利精品| 日韩av网址大全| 亚洲高清二区| 亚洲私人影院| 91成人免费| 91精品1区| 久久成人一区| 国产精品久久久久一区二区三区厕所 | sm捆绑调教国产免费网站在线观看| 亚洲特级毛片| 亚洲国产精品综合久久久| 99国产精品| 天使萌一区二区三区免费观看| 蜜臀久久久99精品久久久久久| 免费在线看一区| 91亚洲自偷观看高清| 欧美少妇精品| 国产69精品久久| 日日骚欧美日韩| 在线高清欧美| 亚洲另类春色校园小说| 亚洲精品高潮| 久久影院一区| 国产精品毛片在线| 黑人巨大精品欧美一区二区桃花岛| 久久夜夜操妹子| 久久在线精品| 综合国产视频| 欧美男人操女人视频| 综合av在线| 国产剧情av在线播放| 日韩一区中文| 国产一区精品二区| 精品国产a一区二区三区v免费| 亚洲无线一线二线三线区别av| 夜夜嗨一区二区| 免费观看亚洲| 青青草精品视频| 日韩电影在线看| 欧美亚洲国产一区| 色综合久久网| 日本不卡免费在线视频| 精品三级国产| 午夜精品一区二区三区国产| 国产精品二区不卡| 一区二区三区国产盗摄| 国产一区二区三区探花| 中文字幕亚洲影视| 免费在线看成人av| 久久精品国产免费| 久久99成人| 91久久在线| 天天综合91| 日韩电影在线免费| 很黄很黄激情成人| 日韩毛片在线| 日韩av中文字幕一区二区| 加勒比久久综合| 欧美精选视频一区二区| 久久99国产精一区二区三区| 欧美亚洲国产激情| 青青青免费在线视频| 国产精品一区二区三区www| 久久看片网站| 黑人精品一区| 天堂日韩电影| 9国产精品午夜| 天堂va蜜桃一区二区三区| 日韩一级特黄| 伊色综合久久之综合久久| yy6080久久伦理一区二区| 久久久久蜜桃| 免费v片在线观看| 久久不见久久见中文字幕免费 | 麻豆91在线观看| 国产精品一区二区中文字幕| 国产精品视频久久一区| 麻豆久久一区二区| 国产精品网站在线看| 两个人看的在线视频www| 中文字幕一区二区三区在线视频| 色爱av综合网| 日韩免费看片| 日韩一区网站| 色综合久久网| 日韩精品导航| 日韩中文欧美在线| www欧美在线观看| 欧美日韩四区| 影音先锋久久资源网| 99久久亚洲精品| 久久精品国产999大香线蕉| 国产一级成人av| 精品国产欧美日韩一区二区三区| 一区中文字幕| 天堂av在线| 久久中文字幕一区二区| 91视频综合| 日韩欧美国产大片| 亚洲国产欧美日本视频| 亚洲性色av| 亚洲激情77| 亚洲一区二区三区免费在线观看| 欧美a级一区二区| 激情亚洲网站| 亚洲精品系列| 久久蜜桃资源一区二区老牛| a∨色狠狠一区二区三区| 久久国产精品免费精品3p| 亚洲精品aaa| 久久国产小视频| 日本欧美韩国一区三区| 影院欧美亚洲| 奇米狠狠一区二区三区| 欧美高清在线| jizz国产精品| 国精品产品一区| 免费欧美一区| 欧美男同视频网| 免费观看亚洲| 亚洲激情五月| 成人在线亚洲| 国产成人精品一区二区免费看京 | 日本不卡一二三区黄网| 蜜桃精品视频在线| 91九色精品国产一区二区|