加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

C39RF程序代寫(xiě)、代做Python設(shè)計(jì)編程
C39RF程序代寫(xiě)、代做Python設(shè)計(jì)編程

時(shí)間:2025-02-27  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Subject: C39RF Applied Financial Modelling in Python Case Study 1
Date: Submission deadline: 28th of February, 12pm UK time, 4pm Dubai time, and 8pm Malaysia
time.
Please note the following before you commence the assignment:
• You have to submit a Jupyter Notebook file (with extension ipynb) as well as a script with
the html extension which contains the solutions (output) to the tasks enumerated below.
Upload these files into the Assignment - Case Study 1 Submission. Failure to upload the
html file will result in losing 10 marks.
• Number the tasks so it is clear which one your are answering.
• You also have to submit all the csv files that contain your data - failing to do so will result in
losing marks.
• Make sure you don’t download data that was discussed in class (lectures and tutorials) such
as: IBM, META, Spotify, Apple, Nvidia, Microsoft, Google, Tesla, S&P index, FTSE100 index,
DAX index, VIX index, Bitcoin, Oil price, Gold price.
• Please remember that only four types of files are allowed to be uploaded onto Canvas/Turnitin:
ipynb, html, excel and csv. Do not upload PNG files. Make sure you download the files and
upload them well before the deadline. Practice downloading the ipynb and html files from
the Jupyter Notebook now.
• For each task, 25% of the marks will be awarded for successfully writing up the code, and
the rest of the marks (75%) will be given for explaining in-depth the results. If you are asked
to discuss for example a plot in 100 words and you only discussed it in 50 words, your mark
will reflect that. Of course, the content of your discussion matters primarily and not the
length of your discussion. Your discussion should always relate to results and you should
not discuss generic issues (such as defining what p-values or test statistics are) as those do
not carry marks.
• Discussions should be provided in a Markdown cell and not in a code cell as comments. Do
not provide definitions of statistical and econometrics terms as that will not yield marks.
• Only use code that was used in Lectures and Tutorials. Do not produce a script using
different coding techniques - otherwise, it will be assumed that external help was utilised,
which will result in your assessment being reported as academic misconduct.
• This assessment is worth 100 marks and it accounts for 50% of your final grade.
• Make sure you have read, understood and followed the Universitys Regulations on plagia rism as published on the Universitys website, that you are aware of the penalties that you
will face should you not adhere to the University Regulations:
https://www.hw.ac.uk/uk/services/academic-registry/academic-integrity/
academic-misconduct.htm
1
• Make sure you have read, understood and avoided the different types of plagiarism ex plained in the University guidance on Academic Integrity and Plagiarism:
https://heriotwatt.sharepoint.com/sites/skillshub/SitePages/Academic-Integrity-and-Plagiarism.
aspx
You have to solve each task to get full marks.
1. Download daily adjusted close price of stock market data from Yahoo Finance for the period
January 2019 to December 2024 for two corporations from two different industries (choose
from: Automobile, Information Technology, Pharmaceuticals, Financial, Healthcare). The
two companies should be of high market capitalisation and they should not have been dis cussed in class. You should use a data scraping method that was used in class. 2 marks
2. Create a new dataframe (using the correct pandas method) with the two stocks. Make sure
the index column is not displayed. 1 mark
3. If the prices of the two stocks are of the same magnitude, plot a timeline of your two time
series (prices) in a single plot. However, if your two stock prices are of different magnitude,
display the two plots separately. Make sure the timeline (date) is visible. Name the axes and
give a title. Also, provide a legend. Discuss the figure in a Markdown cell in 100 words. 3
marks
4. Calculate the daily first differenced log returns for your two variables. 2 marks.
5. Check for missing values in the two returns series and remove them. Then inspect the head
of the two time series to show there are no missing values. Also, display the last 10 rows of
your returns. All these tasks should be executed in a single cell, not separately. 3 marks
6. Save the dataframe as a csv file. You will have to submit this file along with your Jupyter
Notebook and html files. 0.5 mark
7. Calculate the summary statistics for the two stock market returns. Critically discuss the
summary statistics in 200 words in a Markdown cell. 3 marks
8. Calculate the correlation between the two stock returns. Discuss your results briefly (max. 3
sentences) in a Markdown cell. 2 marks
9. Plot a histogram with 70 bins for both of your stock returns. Display the two histograms in
separate figures. Also save your histograms in a png format. These tasks should be executed
in one cell. Discuss in a Markdown cell in 100 words whether the data appears normally
distributed. 4 marks
10. Plot a timeline of your two returns in a single plot. Make sure the timeline (date) is visible.
Discuss the figure in a Markdown cell in no more than 100 words. 3 marks
11. Check your two returns’ series for stationarity and discuss the results in-depth in a Mark down cell in no more than 150 words. 3 marks
2
12. Check if your two returns’ series have outliers. Plot a boxplot for each of the time series
showing the outliers. Discuss in a Markdown cell the plots in 100 words. 3 marks
13. Remove the outliers and replot the two boxplots. Discuss in a Markdown cell the plots in
100 words. 3 marks
14. Download the daily adjusted prices of 30 individual stocks of a main stock market index
(stock market index constituents). You can find the list of indices here: https://finance.yahoo.com/world indices/. We’ve done a similar task for the DAX30 index stock market constituents. At this
stage you need to download the individual stocks of the index and not the index itself. The
stocks should not be the constituents of the S&P500, FTSE100 or the DAX30 indices. The
target period is January 2019 to December 2024. Discuss the index, how is calculated and its
constituents briefly in 100 words in a Markdown cell. 2 marks
15. Calculate and plot the cumulative returns time series for the index constituents. Discuss the
plot in no more than 100 words in a Markdown cell. 3 marks
16. Save the cumulative returns in a csv file. You will have to submit this file along with your
Jupyter Notebook and html files. 0.5 mark
17. Compute and plot the first principal component and discuss your results in detail (300
words). The task is to find out which stocks cause the highest degree of variability in the
index. 8 marks
18. Build a portfolio of stocks by allocating funds proportionally to the 1st principal component
in order to replicate the returns of your chosen index. You need to calculate the cumulative
returns using the weights of the top stocks that form the 1st principal component. 2 marks
19. Plot the cumulative returns of the newly created portfolio. Also, save the figure as a png file.
The two tasks should be executed in one cell. Discuss the plot in 100 words. 2 marks
20. Download the daily adjusted closing price for the index for the January 2019-December 2024
period. 2 marks
21. Calculate the first differenced log returns for the index and save them in a csv file. You will
have to submit this file as part of your assessment. 1 mark
22. Plot in one figure the portfolio of stocks you’ve created using the first principal component
as well as the returns of the index. Discuss whether the portfolio tracks the index or not in a
maximum of 200 words in a Markdown cell. 4 marks
23. Evaluate the effect of the Covid19 pandemic on individual stock returns. Discuss the results
in-depth in 250 words in a Markdown cell. 9 marks
24. Download daily adjusted closing price data for two stocks: one from the Telecom industry
(this will be your dependent variable) and one from the Energy industry (this will be your
independent variable). Both companies should be of high market capitalisation. The period
of interest is January 2000 to December 2024. 2 marks
25. Calculate first the differenced log returns, then transform the data to a dataframe and plot
both returns in one plot. The first two tasks should be executed in one cell. Discuss the plot
in 100 words in a Markdown cell. 4 marks
3
26. Save the returns as a csv file. You will have to submit this file along with your Jupyter
Notebook and html files. 0.5 mark
27. Plot a histogram with 80 bins for both returns separately. Discuss the normality of your data
in a Markdown cell in 100 words. 3 marks
28. Run summary statistics on your returns dataframe and discuss the results in 100 words in a
Markdown cell. 2 marks
29. Calculate the correlation, skewness and kurtosis of the returns. Discuss the results in 150
words in a Markdown cell. 4.5 marks
30. Run an OLS regression and discuss your results in-depth in a Markdown cell in 250 marks.
9 marks
31. Calculate the regression residuals and test these for the Classical Linear Model assumptions.
Discuss your results in a Markdown cell in 300 words. Provide plots where necessary. 9
marks
Total 100 marks
Don’t forget the following:
• Make sure you show all of the outputs (solutions, plots, etc) before downloading the ipynb
and html files.
• Download the ipynb and html scripts and upload them to the Assessment page.
• Upload all the csv files to the Assessment page. Do not upload the png files onto Canvas.


請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:金豆錢(qián)包強(qiáng)制下款怎么辦?金豆錢(qián)包全國(guó)客服電話是多少
  • 下一篇:代寫(xiě)B(tài)ANA201B、Python語(yǔ)言程序代做
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    婷婷亚洲精品| 色8久久久久| 久久精品中文| 国产精品igao视频网网址不卡日韩 | 国产精品日韩精品中文字幕| 阿v视频在线观看| 欧美搞黄网站| 激情不卡一区二区三区视频在线| 欧美一区精品| 在线天堂中文资源最新版| 欧美.日韩.国产.一区.二区| 日韩深夜影院| 亚洲最大黄网| 日韩美女在线| 黄视频免费在线看| 亚洲一区免费| 制服丝袜日韩| 国产精品jk白丝蜜臀av小说| 亚洲人成精品久久久 | 农村少妇一区二区三区四区五区| 国产影视一区| 一区二区三区毛片免费| 国产一区二区av在线| 91视频综合| 老司机午夜精品视频在线观看| 欧美日韩水蜜桃| 精品国产乱码久久久久久果冻传媒| 亚洲婷婷影院| av在线国产精品| 亚洲另类黄色| 麻豆久久久久久| 精品久久福利| 亚洲爱爱视频| 丝袜美腿诱惑一区二区三区| 成人三级高清视频在线看| 亚洲欧美日韩国产一区二区| 好看不卡的中文字幕| 激情丁香综合| 国内精品福利| 激情综合网址| 国产一区二区三区自拍| 久久国产毛片| 久久免费高清| 欧美日韩在线网站| 伊人久久大香线蕉av不卡| 蜜臀av一区| 91精品国偷自产在线电影| 老司机精品视频在线播放| 国产精品自在| 欧美亚洲tv| 久久国产成人午夜av影院宅| 特黄特色欧美大片| 国产综合欧美| 在线精品国产| 午夜亚洲性色福利视频| 热久久免费视频| 波多野一区二区| 天堂а√在线最新版中文在线| caoporn视频在线| 日韩视频网站在线观看| 日本欧美一区| 美女视频黄久久| 久久亚洲黄色| 亚洲97av| 丁香婷婷成人| 国产在线欧美| 性一交一乱一区二区洋洋av| 蜜桃在线一区二区三区| 色在线免费观看| 国产成人久久精品麻豆二区| 国产精品夜夜夜| 欧美韩国一区| 日韩av一二三| 欧美日韩一区二区三区在线电影 | 国产午夜精品一区二区三区欧美| 六月丁香综合| 日韩一区二区在线| 亚洲区第一页| 亚洲天堂日韩在线| 台湾佬综合网| 在线一区视频| 欧美福利在线播放| 日本视频在线一区| 日韩电影在线免费看| 卡一精品卡二卡三网站乱码| 不卡av一区二区| 国产欧洲在线| 日韩和的一区二区| 天堂99x99es久久精品免费| 美女福利一区| 三级影片在线观看欧美日韩一区二区 | 在线日韩电影| 国产精品videosex性欧美| 国产精品亚洲成在人线| 国产一区二区三区天码| 久久精品亚洲人成影院| 鲁大师成人一区二区三区| 阿v视频在线观看| 久久香蕉精品香蕉| www国产精品| 午夜一区在线| 日韩免费在线电影| 日韩一级电影| 国产一区二区精品| 国产亚洲人成a在线v网站 | 国产亚洲高清在线观看| 精品视频免费| 日本一区二区高清不卡| 日韩国产精品久久久久久亚洲| 亚洲午夜久久| 欧美天堂亚洲电影院在线观看| 麻豆蜜桃在线观看| 中文字幕免费精品| 91精品在线观看国产| 91一区二区三区四区| 亚洲毛片视频| 欧美色图一区| 婷婷综合六月| 麻豆视频久久| 免费成人av资源网| 久久午夜影院| 欧美搞黄网站| 国产一区二区高清在线| 91成人福利| 蜜臀av一区二区在线观看| 国产精品chinese| 欧美1区视频| 精品日本视频| 青草伊人久久| 四季av一区二区凹凸精品| 国产精品视频首页| 国产一区白浆| 欧美日韩一视频区二区| 欧美成人日韩| 欧美v亚洲v综合v国产v仙踪林| 亚洲3区在线| 成人av观看| 天堂久久av| 免费在线小视频| 国产精品久久久久久久久久白浆| 欧美r级电影| 亚洲国产合集| 成人三级高清视频在线看| 欧美热在线视频精品999| 国产亚洲高清视频| 国产不卡一二三区| 视频一区视频二区中文字幕| 国产欧美日韩影院| 首页综合国产亚洲丝袜| 国产区精品区| 国产精品xx| 视频免费一区二区| 日韩在线观看一区 | 精品69视频一区二区三区| 99国内精品久久久久久久| 日韩成人精品一区二区三区| 伊人久久大香线蕉综合网站| 日韩国产一区二| 黄色成人在线网站| 亚洲欧洲日韩精品在线| 首页综合国产亚洲丝袜| 日韩精品福利一区二区三区| 日韩.com| 国产成人在线中文字幕| 成人1区2区| 欧美日韩精品一本二本三本| 亚洲一区 二区 三区| 久久亚洲欧洲| theporn国产在线精品| 国产精品一区二区免费福利视频| 久久五月天小说| 999色成人| 日韩精品91| 亚洲午夜视频| 欧美女王vk| 亚洲精品.com| 欧美大片专区| 亚洲精品小区久久久久久| 日韩成人三级| 免费欧美一区| 亚洲宅男网av| 欧美a视频在线| 性色av一区二区怡红| 都市激情亚洲欧美| 亚洲精品裸体| 日韩一区电影| 伊人激情综合| 7m精品国产导航在线| 日韩精品高清不卡| 日本午夜一区| 国产专区一区| 九九99久久精品在免费线bt| 欧美另类激情| 蜜臀精品久久久久久蜜臀| 精品福利久久久| 国产成人1区| 一区二区三区四区五区精品视频| 亚洲一区一卡| 国产91一区| 一区二区三区自拍视频|