加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

COP 3402 代做、代寫 c/c++,Python 程序
COP 3402 代做、代寫 c/c++,Python 程序

時間:2025-02-01  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Homework 1: P-Machine
COP 3402: Systems Software
Spring 2025
See Webcourses  for due dates.
 
Purpose
In this homework you will form a team and implement a virtual machine called the P-machine.
Teams must be either 1 person team or 2 people team.
Directions
(100 points) Implement and submit the P-machine as described in the rest of this document.
 
For the implementation, your code must be written in ANSI standard C and must compile with gcc and run correctly on Eustis. We recommend using the flag -Wall and fixing all warnings.
What to Read
Our recommended book is Systems Software: Essential Concepts (by Montagne) in which we recommend reading chapters 1-3.
 
In this assignment, you will implement a virtual machine (VM) known as the P-machine (PM/0). 
 
P-Machine Architecture
The P-machine is a stack machine that conceptually has one memory area called the process address space (PAS). The process address space is divided into three contiguous segments: The first 10 locations, called “unused”, the “text”, which contains the instructions for the VM to execute and the “stack,” which is organized as a data-stack to be used by the PM/0 CPU.
Registers
The PM/0 has a few built-in registers used for its execution: The registers are named:
• base pointer (BP), which points to the base of the current activation record
• stack pointer (SP), which points to the current top of the stack. The stack grows downwards., 
• program counter (PC), which points to the next instruction to be executed.
• Instruction Register (IR), which store the instruction to be executed
The use of these registers will be explained in detail below. The stack grows downwards.
Instruction Format
The Instruction Set Architecture (ISA) of the PM/0 hasinstructions that each have three components, which are integers (i.e., they have the C type int) named as follows.
OP​is the operation code.
    L​indicates the lexicographical level (We will give more details on L below)
M​depending of the operators it indicates:
​- A number (when OP is LIT or INC).
​- A program address (when OP is JMP, JPC, or CAL).
​- A data address (when OP is LOD, STO)
​- The identity of the arithmetic/relational operation associated to the OPR op-code. 
    (e.g. OPR 0 2 (ADD) or OPR 0 4 (MUL))
    
The list of instructions for the ISA can be found in Appendix A and B.
P-Machine Cycles
The PM/0 instruction cycle conceptually does the following for each instruction: 
 
The PM/0 instruction cycle is carried out in two steps. The first step is the fetch cycle, where the instruction pointed to by the program counter (PC) is fetched from the “text” segment, placed in the instruction register (IR) and the PC is incremented to point to the next instruction in the code list. In the second stepthe instruction in the IR is executed using the “stack” segment. (This does not mean that the instruction is stored in the “stack segment.”)
Fetch Cycle:
1.- IR.OP ß pas[pc]
​IR.L   ß pas[pc + 1]  
​IR.M  ß pas[pc + 2]
​(note that each instruction need 3 entries in array “TEXT”. 
2.- (PCß PC + 3). 
 
Execute Cycle:
The op-code (OP) component in the IR register (IR.OP) indicates the operation to be executed. For example, if IRencodes the instruction “2 0 2”, then the machine adds the top two elements of the stack, popping them off the stack in the process, and stores the result in the top of the stack (so in the end sp is one less than it was at the start). Note that arithmetic overflows and underflows happen as in C int arithmetic.  ​​​​
PM/0 initial/Default Values
When the PM/0 starts execution. 
 
BP == 499, SP == 500, and PC == 10; 
 
This means that execution starts with the “text segment” element 10. Similarly, the initial “stack” segment values are all zero (BP=499 and SP = BP + 1).
 
The figure bellow illustrates the process address space:
 
 
                                  ​ ​ Last instruction    ​​ ​​​               BP   SP
     0              10                                                    
PAS    UNUSED              TEXT    OP    L    M                      STACK              ??? 
                                                                 499    500     
                    PC                                                            
 
Size Limits
 
Initial values for PM/0 CPU registers are:
BP = 499 
SP = BP + 1; 
PC = 10;
Initial process address space values are all zero:  
pas[0] =0, pas[1] =0, pas[3] =0…..[n-1] = 0. 
Constant Values:
ARRAY_SIZE is 500
 
 
Note: Be aware that in PM/0 the stack is growing downwards
Assignment Instructions and Guidelines: 
1. The VM must be written in C and must run on Eustis3. If it runs in your PC but not on Eustis, for us it does not run.
2. The input file name should be read as a command line argument at runtime, for example: $ ./a.out input.txt (A deduction of 5 points will be applied to submissions that do not implement this).
3. Program output should be printed to the screen, and should follow the formatting of the example in Appendix C. A deduction of 5 points will be applied to submissions that do not implement this.
4. Submit to Webcourses:
a) A readme text file indicating how to compile and run the VM
b) The source code of your PM/0 VM which should be named “vm.c”
c) A signed sheet indicating the contribution of each team member to the project.
d) Student names should be written in the header comment of each source code file, in the readme, and in the comments of the submission
e) Do not change the ISA. Do not add instructions or combine instructions. Do not change the format of the input. If you do so, your grade will be zero.
f) Include comments in your program. If you do not comments, your grade will be zero.
g) Do not implement each VM instruction with a function. If you do, a penalty of -100 will be applied to your grade. You should only have functions: main, base, auxiliary functions to print but you must not use functions to implement instructions or FETCH. (Appendix D).
h) The team member(s) must be the same for all projects. In case of problems within the team. The team will be split and each member must continue working as a one-member team for all other projects.
i) On late submissions:
o One day late 10% off.
o Two days late 20% off.
o Submissions will not be accepted after two days.
o Resubmissions are not accepted after two days.
o Your latest submission is the one that will be graded.
 
We will be using a bash script to test your programs. This means your program should follow the output guidelines listed (see Appendix C for an example). You don’t need to be concerned about whitespace beyond newline characters. We use diff -w.
 
 
 
 
 
 
Rubric:
If you submit a program from another semester or we detect plagiarism your grade is F for this course. 
Using functions to implement instructions even if only one is implemented that way, means that your grade will be “zero”.
Pointers and handling of dynamic data structures is not allowed. If you do your grade is “zero”.  Only file pointer is allowed.
-100 – Does not compile
10 – Compiles
25 – Produces lines of meaningful execution before segfaulting or looping infinitely
5 – Follows IO specifications (takes command line argument for input file name and prints output to console)
10 – README.txt containing author names
5 – Fetch cycle is implemented correctly
10 – Well commented source code
5 – Arithmetic instructions are implemented correctly
5 – Read and write instructions are implemented correctly
10 – Load and store instructions are implemented correctly
10 – Call and return instructions are implemented correctly
5 – Follows formatting guidelines correctly, source code is named vm.c
Appendix A 
 
Instruction Set Architecture (ISA) – (eventually we will use “stack” to refer to the    stack segment in PAS)
 
In the following tables, italicized names (such as p) are meta-variables that refer to integers.  If an instruction’s field is notated as “-“, then its value does not matter (we use 0 as a placeholder for such values in examples).
 
ISA:
01   – ​LIT​0, M​​Pushes a constant value (literal) M onto the stack
 
02   – ​OPR​0, M​​Operation to be performed on the data at the top of the stack.​​​ ​​(orreturn from function)
 
03   – ​LOD​L, M​​Load value to top of stack from the stack location at  offset M from L lexicographical levels down
​​​
04   – ​STO​L, M​​Store value at top of stack in the stack location at offset M 
  from L lexicographical levels down
 
05   – ​CAL​L, M​​Call procedure at code index M (generates new 
   Activation Record and PC ß M)
 
06   – ​INC​0, M​​Allocate M memory words (increment SP by M). First three​​​​​are reserved to   Static Link (SL), Dynamic Link (DL),                    ​​​​​and Return Address (RA)
 
07   – ​JMP​0, M​​Jump to instruction M (PC ßM)
 
08   – ​JPC 0, M​​Jump to instruction M if top stack element is 0
 
09   – ​SYS 0, 1​​Write the top stack element to the screen
 
  ​SYS 0, 2​​Read in input from the user and store it on top of the stack 
 
  SYS 0, 3​​End of program (Set “eop” flag to zero)
   
   
   
 
 
 
OP Code Number    OP Mnemonic    L    M    Comment (Explanation)
01    LIT    0    n    Literal push: sp ß sp- 1; pas[sp] ßn 
02    RTN    0    0    Returns from a subroutine is encoded 0 0 0 and restores the caller’s AR:
sp ← bp + 1; bp ← pas[sp - 2];  pc ← pas[sp -3];
03    LOD    n    a    Load value to top of stack from the stack location at offset o from n lexicographical levels down
sp ß sp - 1;
pas[sp] ß pas[base(bp, n) - o];
04    STO    n    o    Store value at top of stack in the stack location at offset o from n lexicographical levels down
pas[base(bp, n) - o] ß pas[sp];
sp = sp +1;
05    CAL    n    a    Call the procedure at code address a, generating a new activation record and setting PC to a:
pas[sp - 1]  ß  base(bp, n); /* static link (SL)
pas[sp - 2]  ß bp;​/* dynamic link (DL)
pas[sp - 3]  ß pc;​ /*return address (RA)​
bp ß sp - 1;
pc ß a;
06    INC    0    n    Allocate n locals on the stack
sp ß sp - n;
07    JMP    0    a    Jump to address a:
PC ← a
08    JPC    0    a    Jump conditionally: if the value in stack[sp] is 0, then jump to a and pop the stack:if (stack[SP] == 0) then { pc (← a; } sp ← sp+1
09    SYS    0    1    Output of the value in stack[SP] to standard output as a character and pop:putc(stack[sp]); sp ← sp+1
(You can use printf if you wish) 
     SYS    0    2    Read an integer, as character value, from standard input (stdin) and store it on the top of the stack.sp ← sp-1; stack[sp] ← getc(); 
(You can use fscanf if you wish)
     SYS    0    3    Halt the program (Set “eop” flag to zero)
 
Appendix B (Arithmetic/Logical Instructions)
 
ISA Pseudo Code
   
 
02 – OPR  0, #​​(1 <= # <= 10)
    
 
​​​​1​ADD​​pas[sp + 1] ß pas[sp + 1] + pas[sp]
​​​​​​​sp ß sp + 1;
 
  2​SUB​​pas[sp + 1] ß pas[sp + 1] - pas[sp]
​​​​​​​sp ß sp + 1;
 
  3​MUL​​pas[sp + 1] ß pas[sp + 1] * pas[sp]
​​​​​​​sp ß sp + 1;
 
  4​DIV​​pas[sp + 1] ß pas[sp + 1] / pas[sp]
​​​​​​​sp ß sp + 1;
 
  5​EQL​​pas[sp + 1] ß pas[sp + 1] == pas[sp]
​​​​​​​sp ß sp + 1;
 
  6​NEQ​​pas[sp + 1] ß pas[sp + 1] != pas[sp]
​​​​​​​sp ß sp + 1;
 
  7​LSS​​pas[sp + 1] ß pas[sp + 1] < pas[sp]
​​​​​​​sp ß sp + 1;
 
  8​LEQ​​pas[sp + 1] ß pas[sp + 1] <= pas[sp]
​​​​​​​sp ß sp + 1;
 
  9​GTR​​pas[sp + 1] ß pas[sp + 1] > pas[sp]
​​​​​​​sp ß sp + 1;
 
  10​GEQ​​pas[sp + 1] ß pas[sp + 1] >= pas[sp]
​​​​​​​sp ß sp + 1;
 
   
 
 
 
 
Appendix C
Example of Execution
 
This example shows how to print the stack after the execution of each instruction.
 
INPUT FILE (In this example the program was stored at memory address zero)
For every line, there must be 3 values representing OP, Land M.
 
7 0 45
7 0 6
6 0 4
1 0 4
1 0 3
2 0 3
4 1 4
1 0 14
3 1 4
2 0 7
8 0 39
1 0 7
7 0 42
1 0 5
2 0 0
6 0 5
9 0 2
5 0 6
9 0 1
9 0 3
 
When the input file (program) is read in to be stored in the text segment starting at location 10 in the process address space, each instruction will need three memory locations to be stored. Therefore, the PC must be incremented by 3 in the fetch cycle.
 
10              13              16              19              22              25              …
7    0    45    7    0    6    6    0    4    1    0    4    1    0    3    2    0    4    etc
 
 
The initial CPU register values for the example in this appendix are:
SP = 500;
BP = SP - 1; 
PC = 10;
IR  = 0 0 0; (a struct or a linear array can be used to implement IR) 
Hint: Each instruction uses 3 array elements and each data value just uses 1 array element. 
 
 
OUTPUT FILE (In this example the program was storedat memory address zero)
Print out the execution of the program in the virtual machine, showing the stack and pc, bp, and sp.
 
NOTE: It is necessary to separate each Activation Record with a bar “|”.  
 
​​​​PC​BP​SP​stack
Initial values:​10​499​500
 
​JMP​0​45​45​499​500​
​INC​0​5​48​499​495​0 0 0 0 0 
Please Enter an Integer: 3
​SYS​0​2​51​499​494​0 0 0 0 0 3 
​CAL​0​6​6​493​494​0 0 0 0 0 3 
​INC​0​4​9​493​490​0 0 0 0 0 3 | 499 499 54 0 
​LIT​0​4​12​493​489​0 0 0 0 0 3 | 499 499 54 0 4 
​LIT​0​3​15​493​488​0 0 0 0 0 3 | 499 499 54 0 4 3 
​MUL​0​3​18​493​489​0 0 0 0 0 3 | 499 499 54 0 12 
​STO​1​4​21​493​490​0 0 0 0 12 3 | 499 499 54 0 
​LIT​0​14​24​493​489​0 0 0 0 12 3 | 499 499 54 0 14 
​LOD​1​4​27​493​488​0 0 0 0 12 3 | 499 499 54 0 14 12 
​LSS​0​7​30​493​489​0 0 0 0 12 3 | 499 499 54 0 0 
​JPC​0​39​39​493​490​0 0 0 0 12 3 | 499 499 54 0 
​LIT​0​5​42​493​489​0 0 0 0 12 3 | 499 499 54 0 5 
​RTN​0​0​54​499​494​0 0 0 0 12 3 
Output result is: 3
​SYS​0​1​57​499​495​0 0 0 0 12 
​SYS​0​3​60​499​495​0 0 0 0 12 
 
 
 
 
Appendix D
 
Helpful Tips
 
This function will be helpful to find a variable in a different Activation Record some L levels down:
 
/**********************************************/
/*​​Find base L levels down​​ */
/*​​​​​​​ */
/**********************************************/
 
int base( int BP, int L)
{
​int arb = BP;​// arb = activation record base
​while ( L > 0)     //find base L levels down
​{
​​arb = pas[arb];
​​L--;
​}
​return arb;
}
 
For example in the instruction:
 
STO L, M  - You can do stack [base (IR.L) +  IR.M]= pas[SP] to store the content of  the top of the stack into an AR in the stack,  located L levels down from the current AR.
 
Note1: we are working at the CPU level therefore the instruction format must have only 3 fields. Any program whose number of fields in the instruction format is graterthan 3 will get a zero.
 
Note2: If your program does not follow the specifications, your grade will get a zero.
 
Note3: if any of the instructions is implemented by calling a function, your grade will be zero.
 
Note4: If you use dynamic memory handling, your grade will be zero.
 
Note5: Pointers are not allowed, except to read a file.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




​​​​​​​

掃一掃在手機打開當前頁
  • 上一篇:代寫指標 通達信【備戰(zhàn)龍妖】副圖指標
  • 下一篇:代寫 CMU 18-879、代做 Python 編程語言
  • ·CIV6782代做、代寫Python程序語言
  • ·CS305程序代做、代寫Python程序語言
  • ·代寫FN6806、代做c/c++,Python程序語言
  • ·代寫CS-UY 4563、Python程序語言代做
  • ·CE235編程代寫、代做python程序設計
  • ·COMP2010J代做、代寫c/c++,Python程序
  • ·COMP09110代做、代寫Python程序設計
  • ·&#160;COMP338編程代做、代寫Python程序語言
  • ·代寫MATH36031、Python程序設計代做
  • ·CDS523編程代寫、代做Python程序語言
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩三级成人| 久久亚洲国产| 玖玖精品在线| 久久av一区| 欧洲亚洲成人| 怕怕欧美视频免费大全| 久久精品国产99国产精品| 久久亚洲精选| 欧美+日本+国产+在线a∨观看| 国模精品一区| 美女视频黄 久久| 欧美91看片特黄aaaa| 99在线精品免费视频九九视| 国内精品偷拍| 日韩欧美国产大片| 国产精品magnet| 国产69精品久久久久9999人| 水野朝阳av一区二区三区| 国内精品福利| 国产一级成人av| 日韩视频在线直播| 国产不卡av一区二区| 国产日韩欧美三级| 日韩天堂在线| 春色校园综合激情亚洲| 国产亚洲精品自拍| 婷婷综合五月| 激情欧美一区二区三区| 国产劲爆久久| 日韩中文一区二区| 亚洲国产国产| 国产精品毛片aⅴ一区二区三区| 日韩一区二区三免费高清在线观看| 国产调教在线| 国产高潮在线| 国产精品99一区二区三区| 日韩一级免费| 欧美日韩精品| 999在线观看精品免费不卡网站| 欧美午夜精彩| 久久高清免费| 国产专区一区| 久久精选视频| 欧美.日韩.国产.一区.二区| 99精品视频精品精品视频| 日本不卡高清| 成人羞羞视频在线看网址| 国产美女撒尿一区二区| 精品九九在线| 91精品亚洲| 久草在线成人| 1024精品久久久久久久久| 欧美日韩黑人| 国产一级久久| 欧美残忍xxxx极端| 极品美女一区| 欧美gv在线观看| 69堂精品视频在线播放| 欧美成人一二区| 久久精品午夜| 91麻豆精品国产91久久久更新资源速度超快| 麻豆国产欧美日韩综合精品二区| 亚洲人成在线影院| 国产成人影院| 国产精品毛片视频| 亚洲无线视频| 玖玖国产精品视频| 不卡福利视频| 美女网站视频久久| 欧美日本精品| 精品一级视频| 99成人超碰| 一本久久知道综合久久| 日韩精品一级中文字幕精品视频免费观看| 免费美女久久99| 三上悠亚国产精品一区二区三区| 成人国产精品入口免费视频| 日韩高清中文字幕一区| 欧美特黄不卡| 国产精品乱战久久久| 亚洲男女av一区二区| 蜜桃视频一区二区三区在线观看 | 免费在线看成人av| 日韩在线观看一区 | 婷婷综合电影| 人人精品亚洲| 久久国产精品久久久久久电车| 在线天堂资源| 日韩国产欧美在线播放| 欧美日韩123| 国产99久久久国产精品成人免费| 日韩天天综合| 欧美一级做a| 国产一区毛片| 91精品推荐| 欧美xxav| 亚洲狼人精品一区二区三区| 99国产精品久久一区二区三区| 婷婷激情久久| 日韩大片在线观看| 影音先锋日韩在线| 久久国产毛片| 色综合久久一区二区三区| 国产日韩一区二区三区在线| 亚洲高清极品| 一区精品久久| 欧美综合社区国产| 日韩av网站在线免费观看| 欧美成人日韩| 亚洲黑人在线| 一本一道久久a久久| 在线综合欧美| 99精品热6080yy久久| 一区二区中文字幕在线观看| 亚洲少妇诱惑| 亚洲国产午夜| 91精品国产自产在线观看永久∴| 91亚洲一区| 国产欧美日韩精品一区二区三区| 亚洲手机视频| 欧美美女被草| 狠狠久久伊人| 久久青青视频| 国产精品视频一区二区三区四蜜臂| 欧美xxxx在线| 日韩一区二区三区免费播放| 综合亚洲自拍| 老鸭窝91久久精品色噜噜导演| 日韩精品免费视频人成| 久久精品高清| 粉嫩av一区二区三区四区五区| 91亚洲无吗| 在线看片国产福利你懂的| 日韩美脚连裤袜丝袜在线| 羞羞答答国产精品www一本| 久久久亚洲欧洲日产| 成人av资源电影网站| 麻豆91在线播放免费| 久久中文字幕二区| 免费一级欧美在线观看视频| 精品香蕉视频| 九色成人搞黄网站| 色婷婷狠狠五月综合天色拍| 亚洲播播91| 三级精品视频| 祥仔av免费一区二区三区四区| 久久99国产精品久久99大师| 精品欧美日韩精品| 第九色区aⅴ天堂久久香| 精品日本视频| 麻豆一区二区麻豆免费观看| 精品国产欧美日韩一区二区三区| 韩国女主播一区二区三区 | 久久99国内| 色综合天天爱| 大伊香蕉精品在线品播放| 美女视频在线免费| 久久国产欧美| 麻豆91在线播放| 香蕉久久夜色精品国产| 日韩av网站免费在线| 日韩国产在线| 亚洲大片在线| 综合激情在线| 色一区二区三区四区| 国产成人aa在线观看网站站| 福利一区视频| 狠狠综合久久av一区二区老牛| 欧美电影在线观看一区| 亚洲美女炮图| 蜜臀av免费一区二区三区| 中文无码久久精品| 国产网站在线| 亚洲午夜av| 亚洲人成精品久久久 | 中文无码久久精品| 蜜桃精品视频在线| 国产调教精品| 欧美黄污视频| 日本在线啊啊| 欧美精选一区二区三区| 国产一区三区在线播放| 日韩精品第一| 亚洲一区区二区| 黑色丝袜福利片av久久| 亚洲精品免费观看| 欧美激情另类| 美女久久久久| 久久久91麻豆精品国产一区| 久久精品72免费观看| 欧美bbbbb| 999国产精品永久免费视频app| 亚洲欧洲一二区| 韩国精品主播一区二区在线观看| 午夜日韩福利| 女一区二区三区| 亚洲三级精品| 影音先锋在线一区| 69堂精品视频在线播放| 亚洲女人av|