加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    免费久久精品| 亚洲精品国产动漫| 石原莉奈在线亚洲二区| 欧美私人啪啪vps| 欧美日本久久| 深夜成人福利| 99热这里只有成人精品国产| 视频一区中文字幕精品| 青青草视频一区| 国产福利电影在线播放| 精品欧美激情在线观看| 激情综合婷婷| 国产欧美精品久久| 国产欧美日韩综合一区在线播放 | 欧美日韩中文一区二区| 日韩av午夜| 亚洲理伦在线| 久久精品国产亚洲aⅴ| 亚洲黄色免费av| 伊人成年综合电影网| 久久久青草婷婷精品综合日韩| 日韩欧美影院| 国产不卡精品| 日本午夜一本久久久综合| 中文字幕在线免费观看视频| 在线亚洲免费| 欧美.日韩.国产.一区.二区| 成人在线超碰| 综合激情久久| 久久99精品久久久野外观看| 亚洲色图网站| 亚洲三级免费| 麻豆高清免费国产一区| 欧美国产视频| 国产成人免费| 亚洲国产综合在线观看| 日韩毛片视频| 日韩电影在线视频| 日本在线啊啊| 亚洲人体影院| 色在线免费观看| 欧美国产偷国产精品三区| 国产日韩综合| 亚洲欧美日韩国产综合精品二区| 尤物精品在线| 亚洲欧洲视频| 免费日韩一区二区| 国产精品丝袜xxxxxxx| 先锋影音国产一区| 免费人成精品欧美精品| 视频一区视频二区中文字幕| 日韩精品一级二级| 蜜臀av一级做a爰片久久| 色男人天堂综合再现| 欧美hd在线| 日韩一区三区| 久久av日韩| 三级久久三级久久久| 麻豆国产欧美一区二区三区| 综合天堂久久久久久久| 影音先锋日韩精品| 国产一区二区观看| 日韩成人免费电影| 亚洲精品视频一二三区| 欧美在线导航| 欧洲乱码伦视频免费| 日韩视频一区| 色综合天天综合网中文字幕| 天堂av中文在线观看| 成人自拍av| 日韩综合小视频| 亚洲最大黄网| 日韩最新av| 久久久久综合| 国产精品色网| 欧美一级鲁丝片| 欧美一区激情| 欧美日本三级| 亚洲精品18| 欧美日韩国产在线观看网站| 日韩视频二区| 伊人久久在线| 在线观看一区视频| 日韩欧美高清一区二区三区| 视频福利一区| 亚洲一区黄色| 欧美一级做a| 97色婷婷成人综合在线观看| 日韩精品一区二区三区中文在线| 啪啪国产精品| 久久先锋影音| 久久精品国产亚洲一区二区三区| 欧美极品一区二区三区| 91欧美极品| av成人激情| 91国拍精品国产粉嫩亚洲一区| 日韩黄色免费电影| 日韩精品一区二区三区中文| 亚洲天堂男人| 天堂8中文在线最新版在线| 日韩综合在线视频| 国产成人精品亚洲线观看| 一区在线视频观看| 中文字幕日本一区二区| 国产中文字幕一区二区三区 | 午夜久久久久| 日韩一区二区在线免费| 伊人亚洲精品| 久久精品中文| 在线手机中文字幕| 欧美专区视频| 香蕉av一区二区| 日韩一区二区三区免费| 亚洲成aⅴ人片久久青草影院| 天堂综合网久久| 日韩大片在线播放| 国产一区二区精品久| 欧美美女一区| 精品久久毛片| 国产精品对白久久久久粗| 丝袜亚洲另类欧美| 日本va欧美va瓶| 欧美亚视频在线中文字幕免费| 国产精品99视频| 国产成人久久精品一区二区三区| 99久久婷婷这里只有精品| 日韩av福利| 日韩精品视频中文字幕| 久久亚洲综合| 国产欧美91| 国产精品日韩精品欧美精品| 青青青伊人色综合久久| 久久精品国产99久久| 亚洲成a人片| 日韩精品免费视频一区二区三区| 午夜亚洲一区| 国产一区二区三区亚洲综合| 婷婷精品进入| 日本不卡视频在线观看| 极品av少妇一区二区| 久久国内精品自在自线400部| 精品国内自产拍在线观看视频| 久久毛片亚洲| 一区二区免费| 色资源二区在线视频| 亚洲综合网狠久久| 欧美aa在线观看| 黄色美女久久久| 精品久久99| 国产一区清纯| 影音先锋中文字幕一区| 天天色综合色| 91麻豆精品一二三区在线| 西西裸体人体做爰大胆久久久| 电影一区中文字幕| 免费成人av在线播放| 日韩精选在线| 四虎4545www国产精品| 红杏aⅴ成人免费视频| 九色成人搞黄网站| 久久性感美女视频| 亚洲天天影视网| 日韩精品一二三区| 亚洲国产中文在线| 久久天天久久| 狠狠噜噜久久| 国产精品嫩草影院在线看| 水蜜桃久久夜色精品一区| eeuss鲁片一区二区三区| 91九色综合| 91精品成人| 亚洲+小说+欧美+激情+另类| 欧美激情偷拍自拍| 精品精品国产毛片在线看| 国产人成精品一区二区三| 99热免费精品在线观看| 日本精品国产| 国产成人福利夜色影视| 亚洲国产不卡| 日韩av中文字幕一区二区| 黄色成人在线视频| 国产视频久久| 久久精品亚洲成在人线av网址| 国产欧美三级| 久久久久久穴| 亚洲网站啪啪| 精品国产一区二区三区性色av| 日本成人在线网站| 中文国产一区| 群体交乱之放荡娇妻一区二区| 在线观看一区视频| 日韩影院二区| 香蕉久久夜色精品| 99久久99久久精品国产片桃花| 91亚洲精品在看在线观看高清| 日韩天堂在线| 久久先锋资源| 免费视频亚洲| 91精品国产自产精品男人的天堂| 亚洲精品黄色|