加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫ENG4200、Python/Java程序設(shè)計(jì)代做
代寫ENG4200、Python/Java程序設(shè)計(jì)代做

時(shí)間:2024-11-24  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:CS1026A代做、Python設(shè)計(jì)程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語(yǔ)言編程
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    日本欧美在线| 亚洲91中文字幕无线码三区| 欧美+亚洲+精品+三区| 久久天天久久| 欧美日韩少妇| 成人豆花视频| 午夜久久美女| 国产欧美精品| 综合日韩av| 色综合www| 亚洲精品乱码久久久久久蜜桃麻豆| 一本一本久久| 日韩成人免费电影| 久久99国产精品二区高清软件| 99亚洲一区二区| 一区二区免费| 麻豆国产欧美一区二区三区| 亚洲一区图片| 一区二区三区亚洲变态调教大结局| 99久久伊人| 国产一区二区高清| 欧美三级在线| 欧美经典影片视频网站| 亚洲在线观看| 久久99偷拍| 国内成人自拍| 99精品国产在热久久婷婷| 国产综合久久| 日韩av不卡在线观看| 国产福利一区二区三区在线播放| 国产精品videossex| 伊人久久大香| 丁香久久综合| 爽成人777777婷婷| 国产福利资源一区| 国产成人黄色| 99精品热6080yy久久| 四虎成人精品永久免费av九九| 亚洲影院天堂中文av色| 一区二区三区成人精品| 国产在线精彩视频| 午夜电影亚洲| 久久蜜桃精品| 日韩激情精品| 欧洲一区在线| 亚洲精品大全| 超碰超碰人人人人精品| 亚洲免费在线| 午夜精品婷婷| 欧美99久久| 999国产精品| 天堂va欧美ⅴa亚洲va一国产| 成年永久一区二区三区免费视频| 欧美黄色网络| 岛国精品在线| 欧美日韩精品免费观看视欧美高清免费大片 | 国模视频一区| av资源在线播放| 美女日韩在线中文字幕| 久久国产小视频| 精品理论电影| 一本一道久久a久久| 天堂99x99es久久精品免费| 国产欧美在线观看免费| 不卡av播放| 99国产精品| 亚洲激情久久| 成人a'v在线播放| 久久久久美女| 台湾佬综合网| 久久久久国内| 久久美女视频| 久久久久久免费视频| 神马午夜久久| 久久久影院免费| 国产专区一区| 午夜久久福利| 伊人久久大香线蕉综合热线| 亚洲五月婷婷| 一区三区视频| 精品中文字幕一区二区三区| 欧美美女在线观看| 国产精品15p| 婷婷另类小说| 四季av一区二区三区免费观看| 日韩福利一区| 欧美a一区二区| 亚洲欧美日本伦理| 精品无人区麻豆乱码久久久| 91精品一区二区三区综合| 亚洲激情二区| 日韩中文在线电影| 美女www一区二区| 日韩成人动漫在线观看| 成人羞羞视频在线看网址| 亚洲美女一区| 香蕉成人av| 成人午夜888| 日韩精品一区二区三区免费观看| 日韩视频一区二区三区在线播放免费观看| 久久成人在线| 久久精品国产亚洲高清剧情介绍| 亚洲色图图片| 国产福利一区二区精品秒拍| 欧美午夜a级限制福利片| 在线免费av资源| 欧美黄色一级视频| 国产精品对白| 丝袜亚洲另类欧美| 欧美日韩va| 日韩美女毛片| 伊人成综合网| 日本美女一区| 欧美经典一区| jizzjizz欧美69巨大| 日本不卡1234视频| 中文字幕人成人乱码| 欧美激情久久久久久久久久久| 另类国产ts人妖高潮视频| 91另类视频| 欧美猛男做受videos| 成人av国产| 国产69精品久久| 久久天堂久久| 男女精品视频| 亚洲国产精品一区制服丝袜| 国产精品极品在线观看| 蜜桃免费网站一区二区三区| 欧美在线免费| 精品72久久久久中文字幕| 色婷婷一区二区三区| 国产精品激情| 欧美aa国产视频| 日本久久久久| 久久精品色综合| 国产精品久久久久蜜臀| 国产亚洲精品美女久久久久久久久久| 久久神马影院| 久久久久黄色| 久久久精品网| 国产麻豆久久| 操欧美女人视频| 日韩国产欧美一区二区| 五月综合久久| 日产精品一区二区| 国产精品午夜一区二区三区| 91精品电影| 欧美日韩亚洲一区| 欧美午夜不卡| 毛片一区二区三区| 性欧美欧美巨大69| 国产精品啊啊啊| 性欧美69xoxoxoxo| 欧美激情视频一区二区三区在线播放| 在线日韩中文| 日日夜夜精品视频免费| 成人短片线上看| 欧美日本国产| 中国女人久久久| 国产午夜一区| 国产黄大片在线观看| 日韩欧美中文字幕在线视频| 91欧美大片| 成人综合专区| 国产精品一区毛片| 亚洲精品成人无限看| 亚洲影视一区二区三区| 国产精品99久久精品| 久久天堂久久| 日本少妇一区| 久久福利综合| 一区二区三区在线电影| 丝袜亚洲另类欧美| 国产精品玖玖玖在线资源| 久久久久久久性潮| 伊人蜜桃色噜噜激情综合| 国产探花一区| 日本在线精品| 亚洲精品a级片| 精品国产亚洲一区二区在线观看 | 国产亚洲午夜| 日本精品在线播放| 男女啪啪999亚洲精品| 亚洲免费播放| 久久一级大片| 国产精品久久久亚洲一区| 国产一区二区你懂的| 亚洲日产av中文字幕| 九色porny丨国产首页在线| 亚欧日韩另类中文欧美| 日本久久一二三四| 日韩在线你懂的| 欧美久久久网站| 午夜日韩激情| 日韩精品免费视频人成| 免费av成人在线| 国产精品久久久网站| 99精品国产在热久久下载| 欧美残忍xxxx极端| 久久久久国内|