加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    色黄视频在线观看| 日韩大尺度在线观看| 丝袜美腿一区二区三区| 97视频一区| 综合国产精品| 亚洲成人看片| 玖玖在线精品| 激情久久中文字幕| 日本亚洲天堂网| 美女视频一区二区| 蜜臀精品久久久久久蜜臀 | 国产亚洲一区二区三区啪| 亚洲涩涩在线| 免费在线观看精品| 天天色天天射综合网| 综合中文字幕| 国产亚洲欧美日韩在线观看一区二区 | 欧美网站在线| 成人精品天堂一区二区三区| 国内成人自拍| 国自产拍偷拍福利精品免费一| 美女福利一区二区三区| 老鸭窝亚洲一区二区三区| 国产字幕视频一区二区| 国产香蕉精品| 九色精品蝌蚪| 亚洲欧美成人vr| 国产精品v亚洲精品v日韩精品| 国产亚洲一区二区手机在线观看| 午夜在线一区| 亚洲少妇自拍| 亚洲欧洲日本mm| 亚洲高清资源在线观看| 99国产**精品****| 日本福利一区| 精品理论电影在线| 国产精品白浆| 精品72久久久久中文字幕| 日本精品在线播放 | 欧美日韩直播| 亚洲性视频在线| 精品中文字幕一区二区三区| 亚洲丁香日韩| 国产免费av一区二区三区| 亚洲日本中文| 疯狂欧洲av久久成人av电影| 一区二区三区四区电影| 国产精品草草| 国产剧情一区二区在线观看| 综合久久十次| 国产精品视频一区二区三区综合 | 色婷婷综合久久久久久| 欧美理论电影在线精品| 精品国产影院| 久久久xxx| 欧美日韩在线网站| 91九色精品| 欧美特黄一区| 羞羞答答国产精品www一本| 在线综合欧美| 色综合天天综合网中文字幕| 丝袜诱惑制服诱惑色一区在线观看| 快she精品国产999| 超碰aⅴ人人做人人爽欧美| 男人av在线播放| 日韩成人综合网| 日本vs亚洲vs韩国一区三区二区| 日本网站在线观看一区二区三区| 亚洲一区二区小说| 日韩 欧美一区二区三区| 99久久免费精品国产72精品九九 | 麻豆成人久久精品二区三区小说| 日本欧美一区二区| 精品一区二区三区中文字幕视频| 亚洲+小说+欧美+激情+另类| 精品久久亚洲| 亚洲成人tv| 一区三区视频| 蜜芽一区二区三区| 深夜视频一区二区| 亚洲日产国产精品| 欧美女王vk| 玖玖玖免费嫩草在线影院一区| 成人aaaa| 国产精品久久久久久影院8一贰佰| 在线一区av| 久久这里只有| 国产精品一国产精品| 99re8这里有精品热视频8在线| 99国产**精品****| 视频一区中文字幕| 久久麻豆视频| 国产精品一区二区三区av| 成人h动漫免费观看网站| 亚洲精品va| 97色伦图片97综合影院| 久久久免费人体| 亚洲精品合集| 欧美粗暴jizz性欧美20| 国产精品成人一区二区不卡| 欧美成人黄色| 日本一区二区乱| 亚洲香蕉网站| 正在播放日韩精品| 亚洲精品字幕| 成人综合专区| 首页综合国产亚洲丝袜| 国产精品最新自拍| 1313精品午夜理伦电影| 日韩视频一区| 国产精品亲子伦av一区二区三区| 久久99青青| 91成人免费| 国产第一精品| 亚洲伊人影院| 视频一区欧美精品| 欧美日本免费| 欧美调教在线| 国产精品精品国产一区二区| 国产精品va| 在线日韩av| av一区在线| 精品伊人久久| 欧美中文字幕| 欧美激情91| 亚洲天堂偷拍| 久久精品超碰| 红杏一区二区三区| 麻豆mv在线观看| 美女精品一区最新中文字幕一区二区三区 | 日本美女一区二区三区| 精品日产乱码久久久久久仙踪林| 国产美女高潮在线| 精品视频一区二区三区在线观看| 亚洲欧美成人综合| 欧美日本中文| 夜久久久久久| 亚洲天堂网站| 中文日韩欧美| 韩国一区二区三区视频| 亚洲一区免费| 91精品国产自产观看在线| 综合av在线| 欧美激情1区2区3区| 日韩午夜免费视频| 欧美大片91| 国产精品日韩精品欧美精品| 亚洲一区二区三区| 免费日韩av| 国产一区国产二区国产三区| 免费成人美女在线观看| 婷婷五月色综合香五月| 免费观看在线综合| 视频精品一区二区三区| 日韩情爱电影在线观看| 卡一精品卡二卡三网站乱码| 国产激情久久| 亚洲国产一区二区三区在线播放| 欧美a一区二区| 亚洲女优在线| 日韩**一区毛片| 偷拍精品精品一区二区三区| 韩国女主播一区二区三区| 久久福利在线| 日韩一级欧洲| 亚洲欧美tv| 日韩精品免费观看视频| 亚洲欧美一区在线| 国产亚洲字幕| 日韩在线观看| 欧美1区2区3区| 国产欧美日韩免费观看 | 在线天堂资源| 久久婷婷丁香| 综合视频在线| 国产精品专区免费| 久久精品国产大片免费观看| 国产精品大片| 欧美91看片特黄aaaa| 亚洲午夜激情在线| 亚洲色图丝袜| 九九热这里有精品| 国产精品三上| 精品国产中文字幕第一页| 久久久伦理片| 鲁鲁在线中文| 欧洲美女日日| 蜜桃精品一区二区三区| 欧美xxxx性| 免费看欧美女人艹b| 久久精品道一区二区三区| 99视频这里有精品| 欧美综合影院| 老司机免费视频久久| 里番精品3d一二三区| 国产精品va视频| 亚洲ww精品| 久久高清免费观看| 久久精品官网| 一区二区三区四区视频免费观看|