加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久93精品国产91久久综合| 久久久久久久性潮| 福利电影一区| 亚洲三级毛片| 中国色在线日|韩| 九九综合久久| 国产色99精品9i| 日韩专区中文字幕一区二区| 久久先锋影音| 亚洲午夜精品久久久久久app| 日韩高清在线免费观看| 色综合久久久| 91中文字幕精品永久在线| 精品日本12videosex| 麻豆一区在线| 电影91久久久| 最新日韩一区| av中文字幕在线观看第一页| 欧美天天视频| 开心激情综合| 国产视频一区在线观看一区免费| 久久国产免费| 99热这里只有精品首页| 亚洲综合中文| 久久精品亚洲| 2019年精品视频自拍| 国产高潮在线| 蜜桃传媒麻豆第一区在线观看| 欧美一区二区性| 久久精品论坛| 99久久免费精品国产72精品九九 | segui88久久综合9999| 午夜国产一区二区| 亚洲福利精品| 91精品国产成人观看| 亚洲高清在线一区| 日韩视频一区二区三区四区| 国产中文欧美日韩在线| 欧美日本中文| 在线精品亚洲| 裸体一区二区三区| 国产精品久久久久毛片大屁完整版 | 99这里有精品| 狠狠色丁香久久综合频道 | 噜噜噜久久亚洲精品国产品小说| 欧美.日韩.国产.一区.二区| 久久精品在线| 久久精品青草| 亚洲二区视频| 欧美日韩高清| 五月天激情综合网| 黄色日韩精品| 欧美日韩免费观看一区=区三区| sdde在线播放一区二区| 亚洲二区视频| 欧美日韩少妇| 久久亚洲风情| 伊伊综合在线| 欧洲av不卡| 国产在视频一区二区三区吞精| 成人黄色在线| 麻豆国产精品官网| 97久久中文字幕| 国产成人精品免费视| 日韩av一区二区三区四区| 精品国产麻豆| 久久久久国产精品午夜一区| 欧美亚洲国产一区| 亚洲精品一二三区区别| 樱桃成人精品视频在线播放| 三级一区在线视频先锋| 久草在线资源福利站| 日韩国产网站| 日韩和欧美的一区| 电影一区二区三区久久免费观看| 日韩电影在线观看网站| 天堂久久av| 亚洲高清av| 蜜臀久久久久久久| 日本在线中文字幕一区二区三区 | 香蕉精品视频在线观看| 久久国产99| 中国色在线日|韩| 99精品欧美| 同性恋视频一区| 91精品一区二区三区综合在线爱| 狠狠色丁香久久综合频道| 日本一二区不卡| 久久国产尿小便嘘嘘| 国产激情精品一区二区三区| 经典三级久久| 羞羞答答成人影院www| 国产理论在线| 在线国产欧美| 9999久久久久| 亚洲综合好骚| 青青青国产精品| 欧美影院精品| 精品国产精品国产偷麻豆| 亚洲一区不卡| 欧美亚洲人成在线| 国产中文精品久高清在线不| 日产精品一区二区| 好吊妞国产欧美日韩免费观看网站| 鲁大师精品99久久久| 亚洲综合精品| 久久精品久久久精品美女| 亚洲亚洲免费| 91久久综合| 亚洲精品第一| 亚洲一二三区视频| 99国产精品私拍| 久久国内精品| 久久伦理中文字幕| 亚洲免费高清| 久久国产视频网| 一区二区中文字幕在线观看| 亚洲欧美清纯在线制服| 欧美a视频在线| 成人在线亚洲| bbw在线视频| 美女久久99| 亚洲欧美日本国产专区一区| 麻豆精品国产91久久久久久| 91国内精品| 国产日韩电影| 亚洲v天堂v手机在线| 伊人蜜桃色噜噜激情综合| 久久精品国产色蜜蜜麻豆| 精品视频网站| 亚洲啊v在线| 国产日本亚洲| 97久久视频| 日韩av综合| 色999日韩| 亚洲人成网亚洲欧洲无码| 亚洲主播在线| 伊人亚洲精品| 一区免费在线| 99久久久成人国产精品| 91精品91| 亚洲欧美久久精品| 日韩午夜一区| 中文在线日韩| av成人激情| 国产精一区二区| 丝袜诱惑亚洲看片| 国产精品成人3p一区二区三区| 精品久久视频| 伊人久久综合影院| 久久精品网址| 黄色av日韩| 一区二区中文字| 另类图片国产| 日韩一级电影| 色偷偷色偷偷色偷偷在线视频| 日韩欧美高清一区二区三区| 国产一二在线播放| 东京久久高清| 美日韩一区二区| 午夜国产精品视频免费体验区| 亚洲精品字幕| 性欧美暴力猛交另类hd| 成人国产精品一区二区网站| 蜜臀a∨国产成人精品| 日韩av电影一区| 伊人久久高清| 欧美1级日本1级| 国产精品亚洲欧美一级在线| 日本一区二区三区视频| 国产精品天天看天天狠| 一区二区动漫| 羞羞答答国产精品www一本 | 亚洲男人都懂第一日本| 欧美黄色大片在线观看| 粉嫩一区二区三区四区公司1| 美女网站一区二区| 香蕉成人久久| 精品99在线| 久久影视三级福利片| 日韩av密桃| 久久蜜桃资源一区二区老牛| 国产精品mm| 伊人成综合网站| 亚州av乱码久久精品蜜桃| 天海翼亚洲一区二区三区| 亚洲精品一区三区三区在线观看| 欧美一级精品片在线看| 亚洲高清极品| 国产欧美一区二区色老头| 欧美专区在线| 久久国产亚洲精品| 国产一区二区在线| 久久久久久久性潮| 日韩在线a电影| 蜜臀91精品国产高清在线观看 | 加勒比中文字幕精品| 亚洲一区av| 国产毛片精品久久| 米奇777在线欧美播放|