加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CENG 2310、代寫matlab設計編程
代做CENG 2310、代寫matlab設計編程

時間:2024-10-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BIEN/CENG 2310
MODELING FOR CHEMICAL AND BIOLOGICAL ENGINEERING
HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, FALL 2024
HOMEWORK #3 (DUE OCT. 28, 2024)
1. In this problem, we will simulate the motion of a planet orbiting the sun:
As shown, we place the sun is located at the origin, and the aphelion (the point at which the planet is farthest away from the sun) is located on the positive w**9;-axis. At time w**5;, the planet is
located at the coordinate (w**9;, 𝑦) and its distance from the sun is w**3; = √w**9;2 + 𝑦2. We can model the motion of the planet as a set of two second-order ODEs:
𝑑2w**9; = −𝐺𝑀 ( w**9; ) 𝑑w**5;2 w**3;3
𝑑2𝑦 = −𝐺𝑀 ( 𝑦 ) 𝑑w**5;2 w**3;3
where 𝐺 is the gravitational constant, 𝑀 is the mass of the sun, and the combination 𝐺𝑀 is equal to 2.94 × 10−4 AU3d−2. (For this problem, we will use the time unit of days (d), and the length unit of astronomical units (AU), which is defined as the average distance from the Earth to the sun, about 149.6 × 106 km. ) We will choose the initial location of the planet to be the aphelion, namely, w**9;(w**5; = 0) = 𝑅0, 𝑦(w**5; = 0) = 0. We also know that, since the orbit is an
ellipse, at the aphelion 𝑑w**9;| = 0. The speed of the planet at the aphelion is 𝑑𝑦| = w**7;0. 𝑑w**5; w**5;=0 𝑑w**5; w**5;=0
  
(a) Write a MATLAB program to solve the set of two second-order ODEs as an initial value problem. Allow the user to specify 𝑅0, the distance of the planet from the sun at the aphelion, and w**7;0, the speed of the planet at the aphelion.
The program should stop when the planet returns to the aphelion, and output the period 𝜏, the time it takes to complete one cycle. Your function definition should be:
                   function tau = solarIVP(R0, v0, showplot)
If showplot is set to true, provide a plot that shows the planet (a blue circle) moving around the sun (a red circle) as a movie. The speed at which the planet moves in the movie should be proportional to the speed it actually moves in orbit around the sun.
(b) Suppose we have a planet for which we can measure its distance from the sun at the aphelion, 𝑅0, and the period 𝜏 of its orbit. Solve the boundary value problem to determine its speed at its aphelion w**7;0, using the shooting method. Your function definition should be:
                        function v0 = solarBVP(R0, tau)
There is no need to produce any plot or movie for this part.
Hint: A good initial guess of w**7;0 is √𝐺𝑀/𝑅0. You may call your function from Part (a). Some data to test your program (do NOT expect exact match):
     Planet
Mercury Earth Mars
𝑹𝟎 /𝐀𝐔
0.46670 1.016** 1.6662
𝝉/𝐝
87.969 365.25 687.98
𝒗𝟎 /(𝐀𝐔/𝐝)
0.02269 0.01692 0.01271
                 DELIVERABLES:
Submit your programs solarIVP.m and solarBVP.m. No need to provide any write-up or plot for this question.

2. To help cool down computer chips, heat sinks like the one shown below are often employed to carry away the heat generated more efficiently:
Consider one of the metal pins, represented in the following schematic diagram:
   Convection
where the temperature 𝑇(w**5;, w**9;) is a function of both time and location (measured axially from the root of the pin), 𝛼 is the thermal diffusivity that measures heat conduction in the metal, ҵ**; is a parameter that measures heat convection from the metal pin to the surrounding air, and 𝑇 is the temperature of the air around the pin.
(a) Suppose we are only interested in the steady-state temperature profile of the pin, i.e., when the computer chip has been running continuously for a while, and ejects a constant flux of heat to the pin. The PDE can then be simplified to a second-order ODE for 𝑇(w**9;):
        Hot computer chip at constant
Air at constant temperature 𝑇 𝑎
Metal pin
 𝑎
temperature 𝑇 𝑐
0
Conduction
 𝐿 w**9;
Its temperature profile can be described by the following partial differential equation (PDE):
with the boundary conditions:
𝜕𝑇 = 𝛼 (𝜕2𝑇) − ҵ**;(𝑇 − 𝑇 )
𝜕w**5; 𝜕w**9;2
𝑎
0=𝛼(𝑑2𝑇)−ҵ**;(𝑇−𝑇 )
𝑇(w**9; = 0) = 𝑇 𝑐
𝑑𝑇| =0 𝑑w**9; w**9;=𝐿
𝑑w**9;2
𝑎
where 𝑇 is the computer chip’s temperature, and 𝐿 is the length of the pin. (Here we are 𝑐
assuming that the “tip” of the metal pin is small compared to its length, so that the heat loss at the tip (in the +w**9; direction) would be negligible.)
>
> > >

Solve this boundary value problem by the finite difference method, dividing the pin’s length into 𝑛 equal pieces. Your function definition should be:
function dTdx0 = heatSinkSteady(alpha, beta, Ta, Tc, L, n)
The program should plot the steady-state temperature profile 𝑇 vs. w**9;, and return the value of 𝑑𝑇| . (This value is proportional to the maximum heat rate that can be carried
𝑑w**9; w**9;=0
away by the heat sink while keeping the chip temperature constant.)
(b) Your model is helpful for designing a heat sink. Given that 𝛼 = 0.001 cm2/s, ҵ**; = 0.03 s−1,
𝑇 =300K,𝑇 =340K,whatvalueof𝐿(thelengthofthepin)wouldyouchoose?Explain 𝑎𝑐
your answer.
(c) Solve the PDE for the transient behavior of the heat sink (i.e. without assuming steady
state) using the method of lines. The initial temperature of the whole metal pin is 𝑇 . For 𝑎
the boundary conditions, this time, instead of fixing the computer chip temperature at 𝑇 , 𝑐
we will assume that the heat flux ejected from the computer chip is constant at the steady state value, i.e. the value of 𝑑𝑇| you get from running the program in Part (a). Stop the
𝑑w**9; w**9;=0
program when it reaches steady state, and make two plots, a 3-D plot of 𝑇 vs. w**9; vs. w**5;, and
a “contour plot” of temperature profiles at 10 different time points overlaid on the same plot. Your function definition should be:
function [] = heatSinkTransient(alpha, beta, Ta, Tc, L, n)
 DELIVERABLES:
Submit your programs heatSinkSteady.m for Part (a) and heatSinkTransient.m for Part (c). For both, we will set up the discretization schemes and the boundary conditions in class, to help you get started.
Also submit the write-up for Part (b), which should come with a plot to justify your answer.

3. In this problem we will model the so-called “diffusion disc assay” for measuring the effectiveness of an antibiotic to stop bacterial growth. A small disc with antibiotic is placed in the center of the agar plate with bacterial culture, and over time, the antibiotic will diffuse outwards. If the antibiotic is effective, it will stop the bacteria from growing near the disc, resulting in an inhibition zone. An antibiotic’s effectiveness is defined by the concentration required to inhibit bacterial growth, called the minimum inhibitory concentration (MIC); the lower the MIC, the more effective the antibiotic is. In this assay, the size of the inhibition zone measured at a given time after applying the disc is used to calculate the MIC.
 As shown, the agar plate is circular, and we place the origin at its center. The radius of the plate is 𝑅, and the radius of the antibiotic disc is 𝜀. At time w**5; = 0, we place the antibiotic disc, and the concentration of the antibiotic at w**3; ≤ 𝜀 is assumed to be constant at 𝐶𝑑𝑖w**4;𝑐 at all times. As the antibiotic diffuses outwards, the concentration of the antibiotic, 𝐶(w**5;, w**3;), as a function of time w**5; and radial distance from the center, w**3;, can be modeled by a PDE. At time w**5; = w**5;𝑓, we measure the radius of the inhibition zone, 𝑅𝑧w**0;𝑛Ү**;. The MIC is equal to 𝐶(w**5; = w**5;𝑓,w**3; = 𝑅𝑧w**0;𝑛Ү**;).
(a) By writing a balance equation for the antibiotic for the ring-shaped control volume on the next page, taking the limit of ∆w**3; → 0, and applying Fick’s Law, show that the diffusion can be described by the following PDE:
𝜕𝐶 𝐷(𝜕2𝐶+1𝜕𝐶) 𝜕w**5; = { 𝜕w**3;2 w**3; 𝜕w**3;
0
where 𝐶(w**5;, w**3;) is the concentration of the antibiotic at time w**5; and radial distance w**3; from the
center, 𝐷 is the diffusivity of the antibiotic in agar.
State any assumption(s). Also, write down suitable initial conditions and boundary conditions. Note that for boundary conditions, it makes sense to impose “no flux” boundary conditions at w**3; = 𝑅 (the edge of the plate) and at w**3; = 0 (center of the plate).
  𝑓w**0;w**3; w**3;>𝜀 𝑓w**0;w**3; w**3; ≤ 𝜀
   Hint:
lim (w**9;+∆w**9;)𝑓(w**9;+∆w**9;)−w**9;𝑓(w**9;)= 𝑑 (w**9;𝑓) ∆w**9;→0 ∆w**9; 𝑑w**9;
 
(b) To solve this PDE by the “Method of Lines” in MATLAB, we will divide the space domain 0 ≤ w**3; ≤ 𝑅 equally into 𝑛 pieces of width h, and call the concentrations at the boundary of adjacent pieces 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), as shown below:
Important note: We will not simulate the point at exactly w**3; = 0, since it will result in a division by zero. Instead, we can assume that the concentration there is equal to 𝐶1(w**5;), in line with our “no flux” boundary condition. For our purpose, it will not matter, since that point will have constant concentration at 𝐶𝑑𝑖w**4;𝑐 anyway.
Let 𝐶Ү**; (w**5;) be the rightmost node within the disc, i.e., Ү**;h ≤ 𝜀 . Write down the ODEs for 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), using finite difference approximations for 𝜕2𝐶⁄𝜕w**3;2 and 𝜕𝐶⁄𝜕w**3;.
(c) Complete the provided MATLAB program (antibioticDisc_template.m) to solve this PDE. Theprogramshouldacceptinputparametersof𝐷,𝑅,𝐶𝑑𝑖w**4;𝑐,𝜀,w**5;𝑓,and𝑅𝑧w**0;𝑛Ү**;,plot𝐶(w**5;,w**3;) in a 3D surface plot, and return the MIC, i.e., an estimate as close to 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;) as possible. Rename your program antibioticDisc.m and submit on Canvas.
For your testing, the following are some sample plots (with parameters specified in the titles). Note the asterisk marking the point 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;).
  
  DELIVERABLES:
Submit your type-written or scanned hand-written write-up for Parts (a) and (b).
Submit your program antibioticDisc.m for Part (c). To save you some trouble in plotting, you should start from the antibioticDisc_template.m provided to you, and only add your code where it is marked “% Add code here”.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:AME 209代做、代寫Matlab 程序設計
  • 下一篇:CAN201代做、python語言程序代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    蜜桃精品视频在线| 乱一区二区av| 久久在线电影| 国产欧美激情| 亚洲成a人片| 国产亚洲精品v| 久久久久久久久久久9不雅视频| 中文字幕一区二区三区在线视频 | 日韩中文字幕区一区有砖一区| 亚洲精品a区| 欧美日韩1区2区3区| 在线观看精品| 免费高清在线视频一区·| 激情婷婷欧美| aaa国产精品视频| 亚洲精品自拍| 国产日本精品| 日本中文字幕一区二区| 免费成人在线视频观看| 在线观看日韩| 亚洲午夜91| 成人精品亚洲| 国产日本亚洲| 最新亚洲精品| 亚洲日本视频| 日韩三区四区| 色综合天天色| 理论片午夜视频在线观看| 午夜日韩福利| 欧美不卡在线| 99久久夜色精品国产亚洲1000部| 一区视频网站| 日韩黄色片在线观看| 国产欧美另类| 国产麻豆精品久久| 久久男人av| 国产精品分类| 亚洲三级网站| 日本欧美久久久久免费播放网| 狂野欧美性猛交xxxx| 亚洲欧美在线成人| 日韩欧美另类一区二区| 三级亚洲高清视频| 性欧美欧美巨大69| 欧美1区2区| 蜜臀av免费一区二区三区| 欧美日一区二区| 亚洲午夜一级| 波多野结衣一区| 欧美日韩高清| 精品1区2区3区4区| 一本一本久久| 久久亚洲风情| 蜜乳av一区二区三区| 超碰在线cao| 日韩激情在线| 国产福利亚洲| 欧美一级久久| 久久久久久毛片免费看| 欧美精品aa| 亚洲第一论坛sis| 视频免费一区二区| 成人在线视频免费观看| 久久久久久久久久久妇女| 自拍亚洲一区| 三级精品视频| 在线免费观看日本欧美爱情大片| 99热在线精品观看| 蜜桃久久精品一区二区| 欧美a级在线观看| 粉嫩av一区二区三区四区五区 | 99久久久国产精品免费调教网站| 99久久精品一区二区成人| 国产成人精品一区二区三区视频 | 精品一区三区| 六月天综合网| 国产精品亚洲一区二区三区在线观看| 91亚洲视频| 麻豆传媒一区二区三区| 亚洲人挤奶视频| 老司机精品视频在线播放| 偷拍欧美精品| 欧美7777| 欧美喷水视频| 久久最新网址| 99精品国产一区二区三区| 亚洲专区一区| 青青草国产一区二区三区| 欧美区亚洲区| 综合激情久久| 一区在线免费| 国产一区一一区高清不卡| 亚洲精品黄色| 亚洲视频国产| 亚洲一级在线| 久久国产三级| 日韩免费一级| 日韩一级免费| 欧美一级做a| 日韩大胆成人| 91精品高清| 青青青免费在线视频| 亚洲午夜一级| 色偷偷色偷偷色偷偷在线视频| 久久精品国产亚洲a| 日日狠狠久久偷偷综合色| 国产精品99一区二区| 在线天堂新版最新版在线8| 麻豆精品在线看| 欧美视频一区| 蜜臀av一区二区三区| 捆绑调教一区二区三区| 久久在线观看| 亚洲欧美日韩国产| 精品久久99| 亚洲国产中文在线| 老司机午夜精品视频| 日本aⅴ免费视频一区二区三区| 人人爱人人干婷婷丁香亚洲| 在线综合亚洲| 亚洲日韩视频| 九九综合久久| 国产毛片精品久久| 欧美视频二区| 鲁鲁在线中文| 国产一区二区在线| 天天精品视频| 日本中文一区二区三区| 久久久9色精品国产一区二区三区| 免费在线观看一区二区三区| 国产精品porn| 国产二区精品| 国产日韩欧美一区在线| 精品网站aaa| 日韩精品dvd| 亚洲不卡视频| 免费看av不卡| 亚洲精品观看| 日韩伦理一区| 96sao在线精品免费视频| 美美哒免费高清在线观看视频一区二区| 欧美日韩一区二区三区四区在线观看 | 一精品久久久| 亚洲久久在线| 日韩亚洲国产欧美| 亚洲一区 二区 三区| 在线精品国产| 国产精品欧美一区二区三区不卡| 激情五月色综合国产精品| 日韩精品福利网| 欧美女激情福利| aa亚洲一区一区三区| 亚洲一区激情| 奇米亚洲欧美| 综合日韩av| 伊人久久亚洲| 欧美一级免费| 精品在线播放| 国产不卡av一区二区| 日韩88av| 粉嫩一区二区三区四区公司1| 日韩在线免费| 在线日本制服中文欧美| 亚洲日本久久| 蜜臀av性久久久久蜜臀aⅴ四虎| 日韩成人dvd| 深夜视频一区二区| 极品中文字幕一区| 国产亚洲高清一区| 免费看黄裸体一级大秀欧美| 亚洲精品亚洲人成在线| 欧美交a欧美精品喷水| 国产精品久久久久久麻豆一区软件| 青青草成人在线观看| 99亚洲一区二区| 日韩mv欧美mv国产网站| 香蕉视频亚洲一级| 亚洲午夜在线| 国内成人自拍| 高清亚洲高清| 先锋影音久久久| 成人福利一区| 久久久免费毛片| 日韩在线观看| 91久久久精品国产| 日韩av网站免费在线| 日韩综合久久| 免费在线观看一区二区三区| 国内精品偷拍| 成人自拍视频| 亚洲成人av观看| 男女av一区三区二区色多| 北条麻妃在线一区二区免费播放 | 亚洲性色av| 国产亚洲激情| 久久精品亚洲人成影院| 国产精品高清一区二区| 99久久婷婷国产综合精品首页 | 蜜桃tv一区二区三区| 日韩一区免费|