加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS3208、代做Python語言編程
代寫INFS3208、代做Python語言編程

時間:2024-10-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Information Technology and Electrical Engineering 
INFS**08 – Cloud Computing 
Programming Assignment Task III (10 Marks) 
Task description: 
In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
UN debates and find the most similar debate contents. The returned result should be the top 10 
verbs that are most frequently used in all debates and the debate that is most similar to the one 
we provide. This assignment is to test your ability to use transformation and action operations in Spark 
RDD programming and your understanding of Vector Database. You will be given three files, 
including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
some technical requirements in your code submission as follows: 
 
Objectives: 
1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
• Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
convert only the “text” column into an RDD. Details of un-general-debates.csv are 
provided in the Preparation section below (1 mark). 
• Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
HDFS and load them into separate RDDs (0.5 marks). 
• Note: If you failed to read files from HDFS, you can still read them from the local file 
system in work/nbs/ and complete the following tasks. 
2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
• Remove empty lines (0.5 marks). 
• Remove punctuations that could attach to the verbs (0.5 marks). 
o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
punctuation. 
• Change the capitalization or case of text (0.5 marks). 
o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
DO NOT make all of them in lower-case. 
• Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
(0.5 mark). 
• Convert all verbs in different tenses into the simple present tense by looking up the 
verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
o E.g., regular verb: “work” - works”, “worked”, and “working”. 
o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
“were”, “being” and “been”. 
o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
• Count the top 10 frequently used verbs in UN debates (2 marks). 
• Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
descending order of the counts (1 marks). 
4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
• Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
• Search the debate content that has the most similar idea to “Global climate change is 
both a serious threat to our planet and survival.” (1 mark) 
 
 
Preparation: 
In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
understand what the task is and what the technical requirements include. Secondly, you should review 
the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
All technical requirements need to be fully met to achieve full marks. You can either practise on 
the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
read the Example of writing Spark code below to have more details. 
 
 
Assignment Submission: 
 You need to compress only the Jupyter Notebook (.ipynb) file. 
 The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
 You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
 Only one extension application could be approved due to medical conditions. 
 
 
Main Steps: 
Step 1: 
Log in your VM instance and change to your home directory. We recommend using a VM instance 
with at least 4 vCPUs, 8G memory and 20GB free disk space. 
 
Step 2: 
git clone https://github.com/csenw/cca3.git && cd cca3 
Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
sudo chmod -R 777 nbs/ 
docker-compose up -d 
Run all the containers using docker-compose 
 
 
 
Step 4: 
Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
 
 Step 5: 
docker ps 
docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
your namenode container ID. After that, you should see the three files from HDFS web interface at 
http://external_IP/explorer.html 
 
 
Step 6: 
The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
forty years of data from different countries, which allows for the exploration of differences between 
countries and over time [1,2]. It is organized in the following format: 
 
In this assignment, we only consider the “text” column. 
The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
is the simple present tense of the verb. 
 The all_verbs.txt file contains all the verbs. 
 
 
Step 7: 
Create a Jupyter Notebook to complete the programming objectives. 
We provide some intermediate output samples below. Please note that these outputs are NOT answers 
and may vary from your outputs due to different implementations and different Spark behaviours. 
• Intermediate output sample 1, take only verbs: 
 
 
• Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
 
 • Intermediate output sample 3, most similar debate: 
 
You are free to use your own implementation. However, your result should reasonably reflect the top 
10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
sentence “Global climate change is both a serious threat to our planet and survival.” 
 
 
Reference: 
[1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
[2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
 
 Appendix: 
Transformations: 
Transformation Meaning 
map(func) Return a new distributed dataset formed by passing each element of the 
source through a function func. 
filter(func) Return a new dataset formed by selecting those elements of the source on 
which funcreturns true. 
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
items (so funcshould return a Seq rather than a single item). 
union(otherDataset) Return a new dataset that contains the union of the elements in the source 
dataset and the argument. 
intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
dataset and the argument. 
distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
dataset. 
groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
Iterable<V>) pairs. 
Note: If you are grouping in order to perform an aggregation (such as a 
sum or average) over each key, using reduceByKey or aggregateByKey will 
yield much better performance. 
Note: By default, the level of parallelism in the output depends on the 
number of partitions of the parent RDD. You can pass an 
optional numPartitions argument to set a different number of tasks. 
reduceByKey(func, 
[numPartitions]) 
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
where the values for each key are aggregated using the given reduce 
function func, which must be of type (V,V) => V. Like in groupByKey, the 
number of reduce tasks is configurable through an optional second 
argument. 
sortByKey([ascending], 
[numPartitions]) 
When called on a dataset of (K, V) pairs where K implements Ordered, 
returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
order, as specified in the boolean ascending argument. 
join(otherDataset, 
[numPartitions]) 
When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(V, W)) pairs with all pairs of elements for each key. Outer joins are 
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
 
 Actions: 
Action Meaning 
reduce(func) Aggregate the elements of the dataset using a function func (which takes 
two arguments and returns one). The function should be commutative 
and associative so that it can be computed correctly in parallel. 
collect() Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a 
sufficiently small subset of the data. 
count() Return the number of elements in the dataset. 
first() Return the first element of the dataset (similar to take(1)). 
take(n) Return an array with the first n elements of the dataset. 
countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
with the count of each key. 
foreach(func) Run a function func on each element of the dataset. This is usually done 
for side effects such as updating an Accumulator or interacting with 
external storage systems. 
Note: modifying variables other than Accumulators outside of 
the foreach() may result in undefined behavior. See Understanding 
closures for more details. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫comp2022、代做c/c++,Python程序設計
  • 下一篇:代做320SC編程、代寫Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产精品久久久久久久久久齐齐| 1024日韩| 久久精品国产精品亚洲综合| 亚洲精品一二三区区别| 国产精品一国产精品| 日韩欧美网址| 午夜久久黄色| 51亚洲精品| 国内揄拍国内精品久久| 久久影院午夜精品| 亚洲精品久久| 激情亚洲另类图片区小说区| 日本美女视频一区二区| 中文在线免费二区三区| 亚洲精品久久久| 红杏一区二区三区| 国产欧美高清| 美女精品一区二区| 欧美色网一区| 蜜桃视频第一区免费观看| 国内精品福利| 国产精品欧美大片| 精品一区二区三区在线观看视频| 成人深夜福利| av资源亚洲| 蜜乳av一区二区| 日韩视频久久| 蜜桃a∨噜噜一区二区三区| 成人午夜大片| 日韩1区2区3区| 国产一区二区三区四区大秀| 亚洲三级免费| 青青草国产精品亚洲专区无| 国产日韩另类视频一区| 日韩电影二区| 捆绑调教日本一区二区三区| 蜜乳av一区二区三区| 亚洲在线播放| 最新国产拍偷乱拍精品| 伊人久久大香线| 欧美亚洲在线日韩| 999国产精品永久免费视频app| 一区二区三区在线资源| 伊人www22综合色| 日本亚洲欧美天堂免费| 欧美欧美在线| 国产欧美日韩视频在线| 欧美视频三区| 国产欧美高清视频在线| 国产精品中文字幕亚洲欧美| 中文字幕日本一区| 91成人app| 欧洲精品99毛片免费高清观看 | 亚洲欧美清纯在线制服| 欧美日韩国产免费观看| 一区在线视频观看| 午夜综合激情| 视频一区二区欧美| 蜜臀av在线播放一区二区三区 | 欧洲亚洲一区二区三区| 激情小说亚洲色图| 久久久精品五月天| 欧美99久久| 国产精品毛片| 欧美残忍xxxx极端| 少妇一区视频| 日韩国产精品91| 粉嫩av国产一区二区三区| 国产亚洲电影| 999在线精品| 久久久久久久久国产一区| 欧洲视频一区| 9国产精品视频| 色777狠狠狠综合伊人| 色综合桃花网| 捆绑调教一区二区三区| 国产乱码精品一区二区三区四区| 日韩黄色一级片| 欧美三级午夜理伦三级小说| 国产精品av一区二区| 亚洲综合国产| 日韩视频网站在线观看| 日韩高清欧美激情| 欧美女王vk| 日本精品影院| 亚洲一区二区免费看| 日韩中文欧美| 日本欧美加勒比视频| 日韩美脚连裤袜丝袜在线| 精品国产一区二区三区久久久蜜臀| 香蕉人人精品| 久久xxxx精品视频| 日韩三区在线| 国产精品一区二区精品视频观看| 国产情侣一区在线| 国产韩国精品一区二区三区| 国产网站在线| 亚洲日韩成人| 精品视频久久| 亚洲综合电影一区二区三区| 成人看片网站| 欧美午夜网站| 欧美日一区二区| 国模精品视频| 999精品嫩草久久久久久99| 大伊香蕉精品在线品播放| 午夜亚洲伦理| 久久这里有精品15一区二区三区| 日韩精品欧美大片| 亚洲国产一区二区三区在线播放 | 三级一区在线视频先锋 | 亚洲人和日本人hd| 欧美大片专区| 少妇精品视频一区二区免费看| 999精品视频在线观看| 清纯唯美亚洲经典中文字幕| 三上亚洲一区二区| 亚洲一区二区三区| 久久精品国产www456c0m| av中文在线资源库| 欧美三级一区| 欧美日韩国产高清| 欧美淫片网站| 精品欧美午夜寂寞影院| 久久久久久久欧美精品| 欧美激情不卡| 精品福利一区| 久久99久久99精品免观看软件| 亚洲va久久| 亚洲美女少妇无套啪啪呻吟| 日韩精品亚洲专区| 久久久一二三| 九色成人搞黄网站| 精品久久亚洲| 色婷婷一区二区三区| 99精品视频在线免费播放| 1024日韩| 三级成人在线视频| 精品一区毛片| 亚洲日本成人| 九九综合久久| 国产精品magnet| 一区视频在线看| 中文字幕亚洲综合久久五月天色无吗''| 久久影视一区| 一区二区三区导航| 999精品在线| 日韩欧美专区| 亚洲先锋成人| 麻豆高清免费国产一区| 美女久久久久| 日本在线不卡视频| 伊人久久大香线| 一区二区三区四区日韩| 好看不卡的中文字幕| 亚洲综合色网| 视频一区在线视频| 亚洲激情播播| 正在播放日韩精品| 国产精品玖玖玖在线资源| 青青草国产一区二区三区| 天堂成人娱乐在线视频免费播放网站| 亚洲精品555| 欧美二区不卡| 欧美激情性爽国产精品17p| 香蕉久久久久久久av网站| 亚洲调教一区| 91看片一区| 欧洲杯足球赛直播| 国产精品一区二区三区四区在线观看| 六月婷婷一区| 在线精品国产亚洲| 久久精品国产免费看久久精品| 一区在线视频观看| 日韩电影在线一区| 欧美日韩va| 午夜精品偷拍| 日韩有吗在线观看| 美日韩一区二区三区| 国产精品免费看| 99热这里只有精品首页| 国产日韩亚洲| 免费观看日韩电影| 美女av一区| 欧美精品影院| 成人国产精品入口免费视频| 在线看片不卡| 66精品视频在线观看| 羞羞视频在线观看欧美| 日韩中文字幕亚洲一区二区va在线 | 在线观看视频一区二区三区| 欧美高清免费| 亚洲一区免费| 久久久久国产| 日韩极品在线观看| 日韩高清中文字幕一区| 国产日韩电影| 狠狠入ady亚洲精品经典电影| 日本精品视频| 久久中文字幕导航|