加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做COMP3230、代寫c/c++編程設(shè)計
代做COMP3230、代寫c/c++編程設(shè)計

時間:2024-10-02  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



COMP**30 Principles of Operating Systems Programming Assignment One
Due date: Oct. 17, 2024, at 23:59 Total 13 points – Release Candidate Version 2
Programming Exercise – Implement a LLM Chatbot Interface
Objectives
1. An assessment task related to ILO 4 [Practicability] – “demonstrate knowledge in applying system software and tools available in the modern operating system for software development”.
2. A learning activity related to ILO 2a.
3. The goals of this programming exercise are:
• To have hands-on practice in designing and developing a chatbot program, which involves the
creation, management and coordination of processes.
• to learn how to use various important Unix system functions:
§ toperformprocesscreationandprogramexecution
§ tosupportinteractionbetweenprocessesbyusingsignalsandpipes § togettheprocesses’srunningstatusbyreadingthe/procfilesystem § toconfiguretheschedulingpolicyoftheprocessviasyscall
Tasks
Chatbots like ChatGPT or Poe are the most common user interfaces to large language models (LLMs). Compared with standalone inference programs, it provides a natural way to interact with LLMs. For example, after you enter "What is Fibonacci Number" and press Enter, the chatbot will base on your prompt and use LLM to generate, for example, "Fibonacci Number is a series of numbers whose value is sum of previous two...". But it’s not the end, you could further enter prompt like "Write a Python program to generate Fibonacci Numbers.” And the model would continue to generate based on the previous messages like "def fibonacci_sequence(n): ...".
Moreover, in practice, we usually separate the inference process handles LLM from main process that handles user input and output, which leads to a separable design that facilitates in-depth control on inference process. For example, we can observe the status of the running process via reading the /proc file system or even control the scheduling policy of the inference process from the main process via relevant syscall.
Though understanding GPT structure is not required, in this assignment, we use Llama3, an open- source variation of GPT and we provide a complete single-thread LLM inference engine as the startpoint of your work. You need to use Unix Process API to create inference process that runs LLM, use pipe and signal to communicate between two processes, read /proc pseudo file system to monitor running status of the inference process, and use sched syscall to set the scheduler of the inference process and observe the performance changes.
Acknowledgement: The inference framework used in this assignment is based on the open-source project llama2.c by Andrej Karpathy. The LLM used in this assignment is based on SmolLM by HuggingfaceTB. Thanks open-source!
    
Specifications
a. Preparing Environment
Download start code – Download start.zip from course’s Moodle, unzip to a folder with:
Rename [UID] in inference_[UID].c and main_[UID].c with your UID, and open Makefile, rename [UID] at line 5 and make sure no space left after your uid.
Download the model files. There are two binary files required, model.bin for model weight and tokenizer.bin for tokenizer. Please use following instructions to download them:
Compile and run the inference program. The initial inference_[UID].c is a complete single- thread C inference program that can be compiled as follows:
Please use -lm flag to link math library and -O3 flag to apply the best optimization allowed within C standard. Please stick to -O3 and don’t use other optimization level. Compiled program can be executed with an integer specifying the random seed and a series of string as prompts (up to 4 prompts allowed) supplied via command-line arguments, aka argv:
Upon invocation, the program will configure the random seed and begin sentence generation based on the prompts provided via command line arguments. Then the program call generate function, which will run LLM based on prompt given (prompt[i] in this example) to generate new tokens and leverage printf with fflush to print the decoded tokens to stdout immediately.
  start
├── common.h # common and helper macro defns, read through first
├── main_[UID].c # [your task] template for main process implementation
├── inference_[UID].c # [your task] template for inference child process implementation
  ├── Makefile
├── model.h
└── avg_cpu_use.py
# makefile for the project, update [UID] on line 5
# GPT model definition, modification not allowed
# Utility to parse the log and calculate average cpu usage
 make prepare # will download model.bin and tokenizer.bin if not existed
# or manually download via wget, will force repeated download, not recommended
wget -O model.bin https://huggingface.co/huangs0/smollm/resolve/main/model.bin
wget -O tokenizer.bin https://huggingface.co/huangs0/smollm/resolve/main/tokenizer.bin
 make -B inference # -B := --always-make, force rebuild
# or manually
gcc -o inference inference_[UID].c -O3 -lm # replace [UID] with yours
 ./inference <seed> "<prompt>" "<prompt>" # prompt must quoted with ""
# examples
./inference 42 "What’s the answer to life the universe and everything?" # answer is 42! ./inference 42 "What’s Fibonacci Number?" "Write a python program to generate Fibonaccis."
 for (int idx = 0; idx < num_prompt; idx++) { // 0 < num_prompt <= 4 printf("user: %s \n", prompts[i]); // print user prompt for our information generate(prompts[i]); // handle everything including model, printf, fflush
}

Following is an example running ./inference. It’s worth noticed that when finished, the current sequence length (SEQ LEN), consists of both user prompt and generated text, will be printed:
 $ ./inference 42 "What is Fibonacci Number?" user
What is Fibonacci Number?
assistant
A Fibonacci sequence is a sequence of numbers in which each number is the sum of the two preceding numbers (1, 1, 2, 3, 5, 8, 13, ...)
......
F(n) = F(n-1) + F(n-2) where F(n) is the nth Fibonacci number. The Fibonacci sequence is a powerful mathematical concept that has numerous applications in various<|im_end|>
[INFO] SEQ LEN: 266, Speed: 61.1776 tok/s
If multiple prompts are provided, they will be implied in the same session instead of treated independently. And they will be applied in turns with model generation. For example, 2nd prompt will be implied after 1st generation, 3rd prompt will be implied after 2nd generation, and so on. You can observe the increasing of SEQ LEN in every generation:
 $ ./inference 42 "What is Fibonacci Numbers?" "Write a program to generate Fibonacci Numbers."
user
What is Fibonacci Number?
assistant
A Fibonacci sequence is a sequence of numbers in which each number is the sum of the two preceding numbers (1, 1, 2, 3, 5, 8, 13, ...)
......
F(n) = F(n-1) + F(n-2) where F(n) is the nth Fibonacci number. The Fibonacci sequence is a powerful mathematical concept that has numerous applications in various<|im_end|>
[INFO] SEQ LEN: 266, Speed: 61.1776 tok/s
user
Write a program to generate Fibonacci Numbers.
Assistant
Here's a Python implementation of the Fibonacci sequence using recursion: ```python
def fibonacci_sequence(n):
if n <= 1: return 1
else:
return fibonacci_sequence(n - 1) + fibonacci_sequence(n – 2)
......
[INFO] SEQ LEN: 538, Speed: 54.2636 tok/s
It’s worth noting that with the same machine, random seed, and prompt (case-sensitive), inference can generate exactly the same output. And to avoid time-consuming long generation, the maximum new tokens generated for each response turn is limited to 256 tokens, the maximum prompt length is limited to 256 characters (normally equivalent to 10-50 tokens), and the maximum number of turns is limited to 4 (at most 4 prompts accepted, rest are unused).
b. Implement the Chatbot Interface
Open main_[UID].c and inference_[UID].c, implement the Chatbot Interface that can:

1. Inference based on user input: Accepts prompt input via the chatbot shell and when user presses `Enter`, starts inferencing (generate) based on the prompt, and prints generated texts to stdout.
2. Support Session: During inferencing, stop accepting new prompt input. After each generation, accept new prompt input via the chatbot shell, and can continue the generation based on the new prompt and previous conversations (prompts and generated tokens). Prompts must be treated in a continuous session (SEQ LEN continue growing).
3. Separate main and inference processes: Separate inference workload into a child process, and the main process only in charge of receiving user input, displaying output and maintaining session.
4. Collect exit status of the inference process on exit: A user can press Ctrl+C to terminate both main process and inference process. Moreover, the main process shall wait for the termination of the inference child process, collect and display the exit status of the inference process before it terminates.
5. Monitoring status of inference process: During inferencing, main process shall monitor the status of inference process via reading the /proc file system and print the status to stderr every 300 ms.
6. Set scheduling policy of the inference process: Before first generation, main process shall be able to set the scheduling policy and parameters of the inference process via SYS_sched_setattr syscall.
Your implementation shall be able to be compiled by the following command:
Then run the compiled program with ./main or ./inference (if is in Stage 1). It accepts an argument named seed that specifies the random seed. For stage 3, to avoid stdout and stderr congest the console, we use 2>proc.log to dump /proc log to file system.
We suggest you divide the implementation into three stages:
• Stage 1 – Convert the inference_[UID].c to accept a seed argument and read in the prompt from the stdin.
§ Implementpromptinputreading,callgeneratetogeneratenewtokensandprinttheresult.
• Stage 2 – Separate user-input workload into main_[UID].c (main process) and inference workload in inference_[UID].c (inference process). Add code to the main process to:
§ use fork to create child process and use exec to run inference_[UID].c
§ use pipe to forward user input from main process to the inference process’s stdin.
§ add signal handler to correctly handle SIGINT for termination; more details in specifications.
§ use signal (handlers and kill) to synchronize main process and inference process.
§ Main Process shall receive signal from inference process upon finishing each generation for the prompt.
§ use wait to wait for the inference process to terminate and print the exit status.
• Stag 3 – Adding code to the main process that
§ During the inference, read the /proc file system to get the cpu usage, memory usage of the inference process, and print them out to the stderr every 300ms.
§ Beforefirstgeneration,useSYS_sched_setattrsyscalltosettheschedulingpolicyand related scheduling parameters for the inference child process.
 make -B # applicable after renaming [UID]
# or manually
gcc -o inference inference_[UID].c -O3 -lm # replace [UID] with yours gcc -o main main_[UID].c # replace [UID] with yours
   ./inference <seed> ./main <seed> ./main <seed> 2>log
# stage 1, replace <seed> with number
# stage 2, replace <seed> with number
# stage 3, replace <seed> with number, redirect stderr to file

Following is some further specifications on the behavior of your chatbot interface:
• Your chatbot interface shall print out >>> to indicate user prompt input.
§ >>> shall be printed out before every user prompt input.
§ Your main process shall wait until the user presses `Enter` before forwarding the prompt to
the inference process.
§ Your main process shall stop accepting user input until model generation is finished. § >>> shall be printed immediately AFTER model generation finished.
§ After>>>printoutagain,yourmainprocessshallresumeacceptinguserinput.
• Your inference process shall wait for user prompt forwarded from the main process, and
after finishing model generation, wait again until next user prompt is received.
§ Though blocked, the inference process shall correctly receive and handle SIGINT to terminate.
• Your program shall be able to terminate when 4 prompts is received, or SIGINT signal is received. § Your main process shall wait for inference process to terminate, collect and print the exit status of inference process (in form of Child exited with <status>) before it terminates.
• Your main process shall collect the running status of inference process ONLY when running inference model, for every 300ms. All information about the statistics of a process can be found in the file under the /proc/{pid} directory. It is a requirement of this assignment to make use of the /proc filesystem to extract the running statistics of a process. You may refer to manpage of /proc file system and kernel documentations. Here we mainly focus on /proc/{pid}/stat, which includes 52 fields separated by space in a single line. You need to parse, extract and display following fields:
 ./main <seed>
>>> Do you know Fibonacci Numer?
Fibonacci number! It's a fascinating...<|im_end|>
>>> Write a Program to generate Fibonacci Number? // NOTE: Print >>> Here!!! def generate_fibonacci(n):...
      pid tcomm state
policy nice vsize task_cpu utime stime
Process Id
Executable Name
Running Status (R is running, S is sleeping, D is sleeping in an uninterruptible wait, Z is zombie, T is traced or stopped)
Scheduling Policy (Hint: get_sched_name help convert into string)
Nice Value (Hint: Priority used by default scheduler, default is 0)
Virtual Memory Size
CPU id of the process scheduled to, named cpuid
Running time of process spent in user mode, unit is 10ms (aka 0.01s) Running time of process spent in system mode, unit is 10ms (aka 0.01s)
                  Moreover, you will need to calculate cpu usage in percentage (cpu%) based on utime and stime. CPU usage is calculated by the difference of current- and last- measurement divided by interval length, and as we don’t count on difference between stime and utime, sum the difference of utime and stime. For example, if your current utime and stime is 457 and 13, and last utime and stime is 430 and 12, respectively, then usage will be ((457-430)+(13-12))/30=93.33% (all unit is 10ms). For real case, verify with htop. At last, you shall print to stderr in following form. To separate from stdout for output, use ./main <seed> 2>log to redirect stderr to a log file.
   [pid] 6**017 [tcomm] (inference) [state] R [policy] SCHED_OTHER [nice] 0 [vsize] 358088704 [task_cpu] 4 [utime] 10 [stime] 3 [cpu%] 100.00% # NOTE: Color Not Required!!! [pid] 6**017 [tcomm] (inference) [state] R [policy] SCHED_OTHER [nice] 0 [vsize] 358088704 [task_cpu] 4 [utime] 20 [stime] 3 [cpu%] 100.00%

• Before the first generation, main process shall be able to set the scheduling policy and nice value of the inference process. To make setting policy and parameters unified, you must use the raw syscall SYS_sched_setattr instead of other glibc bindings like sched_setscheduler. Currently Linux implement and support following scheduling policies in two categories:
§ Normal Policies:
§ SCHED_OTHER:defaultschedulingpoliciesofLinux.AlsonamedSCHED_NORMAL § SCHED_BATCH:fornon-interactivecpu-intensiveworkload.
§ SCHED_IDLE:forlowprioritybackgroundtask.
§ Realtime Policies: need sudo privilege, not required in this assignment.
§ [NOTREQUIRED]SCHED_FIFO:First-In-First-OutPolicywithPreemption
§ [NOTREQUIRED]SCHED_RR:Round-RobinPolicy
§ [NOTREQUIRED]SCHED_DEADLINE:EarliestDeadlineFirstwithPreemption
For Normal Policies (SCHED_OTHER, SCHED_BATCH, SCHED_IDLE), their scheduling priority is configured via nice value, an integer between -20 (highest priority) and +19 (lowest priority) with 0 as the default priority. You can find more info on the manpage.
Please be noticed that on workbench2, without sudo, you’re not allowed to set real-time policies or set normal policies with nice < 0 due to resource limit, please do so only for benchmarking in your own environment. Grading on this part at workbench2 will be limited to setting SCHED_OTHER, SCHED_IDLE and SCHED_BATCH with nice >= 0.
c. Measure the performance and report your finding
Benchmark the generation speed (tok/s) and average cpu usage (%) of your implementation with different scheduling policies and nice values.
     Scheduling Policies
SCHED_OTHER SCHED_OTHER SCHED_OTHER SCHED_BATCH SCHED_BATCH SCHED_BATCH SCHED_IDLE
Priority / Nice
0
2
10
0
2
10
0 (only 0)
Speed (tok/s)
Avg CPU Usage (%)
                                For simplicity and fairness, use only the following prompt to benchmark speed:
For average cpu usage, please take the average of cpu usage from the log (like above example). For your convenience, we provide a Python script avg_cpu_use.py that can automatically parse the log (by specifying the path) and print the average. Use it like: python3 avg_cpu_use.py ./log
Based on the above table, try to briefly analyze the relation between scheduling policy and speed (with cpu usage), and briefly report your findings (in one or two paragraph). Please be advised that this is an open question with no clear or definite answer (just like most of problems in our life), any findings correspond to your experiment results is acceptable (including different scheduler make nearly no impact to performance).
 ./main <seed> 2>log
>>> Do you know Fibonacci Numer?
...... # some model generated text
[INFO] SEQ LEN: xxx, Speed: xx.xxxx tok/s # <- speed here!

IMPORTANT: We don’t limit the platform for benchmarking. You may use: 1) workbench2; 2) your own Linux machine (if any); 3) Docker on Windows/MacOs; 4) Hosted Container like Codespaces. Please note that due to large number of students this year, benchmarking on workbench2 could be slow with deadline approaches.
Submit the table, your analysis in one-page pdf document. Grading of your benchmarking and report is based on your analysis (corresponds to your result or not) instead of the speed you achieved.
Suggestions for implementation
• You may consider scanf or fgets to read user input, and user input is bounded to 512 characters, defined as macro MAX_PROMPT_LEN in common.h (also many other useful macro included).
• To forward user input to the inference process’s stdin, you may consider using dup2.
• You may consider using SIGUSR1 and SIGUSR2 and sigwait to support synchronizations
between main process and inference process.
• There is no glibc bindings provided for SYS_sched_setattr and SYS_sched_getattr
syscall, so please use raw syscall interface, check manpage for more info.
• To convert scheduling policy from int to string, use get_sched_name defined in common.h
• Check manpage first if you got any problem, either Google “man <sth>” or “man <sth>” in shell.
Submission
Submit your program to the Programming # 1 submission page at the course’s moodle website. Name the program to inference_[UID].c and main_[UID].c (replace [UID] with your HKU student number). As the Moodle site may not accept source code submission, please compress all files to the zip format before uploading.
Checklist for your submission:
• Your source code inference_[UID].c and main_[UID].c. (must be self-contained, no dependencies other than model.h and common.h provided)
• Your report including benchmark table, your analysis and reasoning.
• Your GenAI usage report containing GenAI models used (if any), prompts and responses.
• Please do not compress and submit model and tokenizer binary file (use make clear_bin)
Documentation
1. At the head of the submitted source code, state the:
• File name
• Name and UID
• Development Platform (Please include compiler version by gcc -v)
• Remark – describe how much you have completed (See Grading Criteria)
2. Inline comments (try to be detailed so that your code could be understood by others easily)
 
Computer Platform to Use
For this assignment, you can develop and test your program on any Linux platform, but you must make sure that the program can correctly execute on the workbench2 Linux server (as the tutors will use this platform to do the grading). Your program must be written in C and successfully compiled with gcc on the server.
It’s worth noticing that the only server for COMP**30 is workbench2.cs.hku.hk, and please do not use any CS department server, especially academy11 and academy21, as they are reserved for other courses. In case you cannot login to workbench2, please contact tutor(s) for help.
Grading Criteria
1. Your submission will be primarily tested on the workbench2 server. Make sure that your program can be compiled without any errors using the Makefile (update if needed). Otherwise, we have no way to test your submission and you will get a zero mark.
2. As tutors will check your source code, please write your program with good readability (i.e., with good code convention and sufficient comments) so that you won’t lose marks due to confusion.
3. You can only use the Standard C library on Linux platform (aka glibc).
Detailed Grading Criteria
• Documentation -1 point if failed to do
• Include necessary documentation to explain the logic of the program.
• Include required student’s info at the beginning of the program.
• Report: 1 point
• Measure the performance and average cpu usage of your chatbot on your own computer.
• Briefly analyze the relation between performance and scheduling policy and report your
finding.
• Your finding will be graded based on the reasoning part.
• Implementation: 12 points
1. [1pt] Build a chatbot that accept user input, inference and print generated text to stdout.
2. [2pt] Separate Inference Process and Main Process (for chatbot interface) via pipe and exec
3. [1pt] Correctly forward user input from main process to subprocess via pip
4. [1pt] Correctly synchronize the main process with the inference process for the completion of
inference generation.
5. [2pt] Correctly handle SIGINT that terminates both main and inference processes and collect
the exit status of the inference process.
6. [2.5pt] Correctly parse the /proc file system of the inference process during inferencing to
collect and print required fields to stderr.
7. [0.5pt] Correctly calculate the cpu usage in percentage and print to stderr.
8. [2pt] Correctly use SYS_sched_setattr to set the scheduling policy and parameters.
Plagiarism
Plagiarism is a very serious offense. Students should understand what constitutes plagiarism, the consequences of committing an offense of plagiarism, and how to avoid it. Please note that we may request you to explain to us how your program is functioning as well as we may also make use of software tools to detect software plagiarism.

GenAI Usage Report
Following course syllabus, you are allowed to use Generative AI to help completing the assignment, and please clearly state the GenAI usage in GenAI Report, including:
• Which GenAI models you used
• Your conversations, including your prompts and the responses.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代做CMPT 477、代寫Java/python語言編程
  • 下一篇:CSCI1120代寫、代做C++設(shè)計程序
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    天天av综合| 亚洲图片小说区| aa国产精品| 激情av综合| 欧美激情视频一区二区三区在线播放 | 亚洲v天堂v手机在线| 婷婷激情一区| 黄色工厂这里只有精品| 美女精品视频在线| 日韩高清不卡一区| 日韩免费视频| av不卡在线看| 精品久久ai| 日韩精品免费一区二区夜夜嗨| 福利精品一区| 色综合久久一区二区三区| 亚洲网站在线| 伊人久久亚洲| 国产精品日本一区二区三区在线 | 成人精品毛片| 国产欧美日韩| 亚洲精品三级| 成人久久网站| 九色porny视频在线观看| 国产亚洲亚洲| 国内激情久久| 欧美男人操女人视频| 午夜精品影视国产一区在线麻豆| 国产日韩精品视频一区二区三区 | 日韩欧乱色一区二区三区在线| 久久亚洲视频| 午夜久久黄色| 国产真实久久| 一区二区三区四区在线看| 深夜福利一区二区三区| 亚洲午夜久久| 国产免费久久| av在线亚洲一区| 日本不卡123| 日本在线不卡视频| 久久精品麻豆| 久久精品国产亚洲a| 蜜臀久久精品| 最近在线中文字幕| 欧美成人精品一区二区男人小说| 日韩中文字幕亚洲一区二区va在线| 久久久噜噜噜| 久久久精品午夜少妇| 精品国产美女| 91精品秘密在线观看| 久久久久综合| 在线日韩中文| 亚洲精品91| 一区精品久久| 亚洲一卡久久| 老司机精品导航| 视频一区二区三区在线| 久热精品在线| 四虎成人精品永久免费av九九| 免费欧美日韩国产三级电影| 老司机精品福利视频| 成人一级福利| 日韩欧美视频专区| 黑人一区二区三区| 麻豆中文一区二区| 欧美极品一区二区三区| 国产麻豆精品久久| 日本99精品| 99精品电影| 成人vr资源| 男人的天堂亚洲在线| 噜噜噜在线观看免费视频日韩| 爽好久久久欧美精品| h片在线观看视频免费免费| 国产传媒av在线| 日本国产欧美| 欧美日一区二区三区在线观看国产免| 日本女人一区二区三区| 国产视频一区二区在线播放| 久久最新网址| 国产精品调教| 极品美女一区二区三区| 老司机一区二区三区| 欧美国产美女| 日韩欧美激情| 国产精品日韩精品在线播放| 岛国精品一区| 香港欧美日韩三级黄色一级电影网站| 在线国产一区| jizzjizz中国精品麻豆| 国产日韩亚洲欧美精品| 国内成人精品| 精品三级在线观看视频| 亚洲视频大全| 美女视频在线免费| 久久久久观看| 亚洲啊v在线免费视频| 亚洲视频综合| 岛国av免费在线观看| 国产情侣一区| 天堂va欧美ⅴa亚洲va一国产| 香蕉一区二区| 伊人成综合网站| 国产精品www.| 国语一区二区三区| 国产精品毛片在线| 日韩一区二区三免费高清在线观看| 国产精品2区| 欧美午夜精彩| 成人av免费电影网站| 欧美日韩亚洲一区二区三区在线| 午夜日韩影院| 午夜一级久久| 亚洲久久一区二区| 清纯唯美亚洲综合一区| 噜噜噜躁狠狠躁狠狠精品视频| 99精品国产在热久久婷婷| 精品国产一区二| 一本色道久久综合| 亚洲美女91| 欧美~级网站不卡| 日韩理论电影| 日韩电影在线一区二区三区| 婷婷久久综合| 国产欧美一区二区色老头 | 日韩欧美影院| 一本色道久久综合一区| 日本午夜精品久久久久| 亚洲精品视频一二三区| 免费人成在线不卡| 成人黄色91| 亚州av乱码久久精品蜜桃| 成人在线免费电影网站| 精品中文在线| 日本久久黄色| 亚洲人成网亚洲欧洲无码| 99国产精品视频免费观看一公开| 欧美成人xxxx| 激情欧美一区二区三区| 久久福利在线| 亚洲啊v在线观看| 国产亚洲欧美日韩精品一区二区三区 | 国产91欧美| 色婷婷久久久| 国产成人久久精品麻豆二区| 亚洲国产一区二区三区网站| 97在线精品| 国产精品欧美大片| 欧美伊人亚洲伊人色综合动图| 超碰cao国产精品一区二区| 天堂√8在线中文| 激情av综合| 亚洲成人a级片| 欧美日韩性在线观看| 国产情侣久久| 黄色日韩在线| 久久爱www成人| 日韩av片子| 亚洲福利合集| 成人午夜一级| 黄色亚洲在线| 亚洲瘦老头同性70tv| sm捆绑调教国产免费网站在线观看 | 综合亚洲色图| 综合久久2023| 日本韩国欧美超级黄在线观看| 欧美国产视频| 悠悠资源网久久精品| 国产一区二区精品福利地址| 喷白浆一区二区| 欧美视频久久| 日日夜夜一区二区| 亚洲激情二区| 亚洲2区在线| 欧美91在线|欧美| 欧美日韩国产亚洲一区| 国产亚洲欧美日韩在线观看一区二区| 欧美独立站高清久久| 国内精品麻豆美女在线播放视频| 91欧美精品| 99亚洲一区二区| 亚洲精品aⅴ| 国产欧美一区二区三区国产幕精品| 在线综合欧美| 国产香蕉精品| 不卡一区视频| 在线天堂中文资源最新版| 久久精选视频| 亚洲黄页网站| 成人国产在线| 西西裸体人体做爰大胆久久久| 日韩极品在线| 捆绑调教一区二区三区| 在线人成日本视频| 欧美在线资源| 亚洲精品在线a| 中文字幕免费精品| 欧美天堂一区二区| 成人亚洲一区| 亚洲成人日韩|