加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美在线色图| 青青久久精品| а√中文在线天堂精品| 成人黄色免费网站| 女人色偷偷aa久久天堂| 日韩电影在线一区二区三区| 男人天堂视频在线观看| 自拍亚洲一区| 日韩视频在线直播| 久久中文在线| 亚洲精品国产精品国产| 在线电影一区二区| 国产精品毛片久久久| 中文在线日韩| 亚洲ww精品| av资源网在线播放| 红桃视频亚洲| 欧美在线观看视频一区| 91成人午夜| 欧美精品三级在线| 国产日韩亚洲欧美精品| 欧洲一区精品| 美女精品一区| 婷婷综合亚洲| 久久久久一区| 欧美日韩网址| 日韩不卡在线观看日韩不卡视频| 亚洲精品孕妇| 日本久久一区| 青青在线精品| 波多视频一区| 蜜桃91丨九色丨蝌蚪91桃色| 很黄很黄激情成人| 色综合久久中文| 国产主播性色av福利精品一区| 国产尤物久久久| 亚洲午夜剧场| 亚洲三级国产| 麻豆成人91精品二区三区| 日本美女久久| 欧美日韩卡一| 91综合国产| 日韩欧美精品一区二区综合视频| sm捆绑调教国产免费网站在线观看| 在线亚洲观看| 中文一区在线| 夜夜爽av福利精品导航| 狠狠爱www人成狠狠爱综合网| 激情五月色综合国产精品| 久久久999| 国产99久久| 小说区图片区色综合区| 欧美亚洲国产激情| 激情综合在线| 91成人网在线观看| 欧美精品一卡| 亚洲综合精品| 免费一级欧美片在线观看| 蜜臀av性久久久久av蜜臀妖精| 另类av一区二区| 免费观看一级特黄欧美大片| 日韩综合一区| 蜜桃av在线| 国产精品4hu.www| 久久尤物视频| 96sao精品免费视频观看| 久久99精品久久久久久园产越南| 亚洲精品中文字幕99999| 久久久91麻豆精品国产一区| 日韩三级不卡| 四虎884aa成人精品最新| 欧美亚洲在线日韩| 黑丝一区二区| 91嫩草亚洲精品| 香蕉久久久久久| 综合久草视频| 日韩精品免费视频一区二区三区 | 免费毛片在线不卡| 天天做天天爱综合| 久久午夜视频| 天天综合网站| 日本在线不卡视频| 国产午夜精品一区在线观看| 日韩精品91亚洲二区在线观看| 成人午夜网址| 一本一道久久综合狠狠老| 男人的j进女人的j一区| 精品丝袜在线| 欧美精品福利| 91精品久久久久久综合五月天| 久久久综合色| 视频一区国产视频| 99久久综合国产精品二区| 亚洲天堂免费| 国产精品色在线网站| 香蕉国产精品| 欧美aa免费在线| 国产精品s色| 911亚洲精品| 亚洲精品1234| 成人国产网站| 国产a久久精品一区二区三区| 国产精品极品在线观看| 伊人久久亚洲影院| 播放一区二区| 美女毛片一区二区三区四区最新中文字幕亚洲| 一区二区三区高清在线观看| 午夜久久影院| 成人午夜亚洲| 欧美精美视频| 天堂美国久久| 免费高清视频在线一区| 精品一区二区三区四区五区| 精品久久电影| 视频在线不卡免费观看| 亚洲人人精品| 久久久久午夜电影| 国产精品久久久久久影院8一贰佰 国产精品久久久久久麻豆一区软件 | 日韩av中字| 国产日韩欧美一区二区三区| 国产国产精品| 亚洲精品伦理| av在线亚洲色图| 久久福利毛片| 亚洲精品美女| 天天躁日日躁成人字幕aⅴ| 超碰在线99| 亚洲ab电影| 视频一区视频二区中文| 你懂的视频一区二区| 亚洲图片在线| 成人一区视频| 福利电影一区| 日韩视频在线观看| 日韩区欧美区| av手机在线观看| 亚洲人成网亚洲欧洲无码| 中文日韩在线| 电影91久久久| 亚洲男女自偷自拍| 国产精品1区| 亚洲一区观看| 国产亚洲欧美日韩在线观看一区二区| 99亚洲一区二区| 午夜天堂精品久久久久| 亚洲欧美一区在线| 久久精品亚洲| 国产一区激情| 亚洲国产一区二区精品专区| 午夜久久99| 国产精品第十页| 最新日韩欧美| 国产精品日本一区二区不卡视频| 尤物精品在线| 国产欧美精品久久| 免费成人你懂的| 日本精品在线播放 | 欧美日韩精品一区二区视频 | 欧美激情亚洲| 中文高清一区| 日韩av网站在线观看| 久草在线资源站手机版| 亚洲视频国产| 九九久久国产| 女人天堂亚洲aⅴ在线观看| 亚洲老司机网| 国产免费拔擦拔擦8x高清在线人| 伊人精品久久| 国产精品麻豆成人av电影艾秋| 久久国产电影| 欧美激情综合色综合啪啪| 老鸭窝亚洲一区二区三区| 日韩一区二区三区精品视频第3页| 视频在线日韩| 欧美日韩激情| 亚洲色图丝袜| 日韩中文影院| 不卡av一区二区| 欧美视频二区欧美影视| 国产日韩电影| 天天久久综合| 日韩美脚连裤袜丝袜在线| 久久福利综合| av免费在线一区| 一级欧洲+日本+国产 | 中文字幕日本一区二区| 欧洲福利电影| 久久69av| 日本成人在线不卡视频| 97精品一区| 欧美福利专区| 日韩高清影视在线观看| 黄页免费欧美| 免费观看一级特黄欧美大片| 久久久成人网| 日韩av不卡一区二区| 久久精品亚洲| 伊伊综合在线| 在线一区欧美| 91精品国产成人观看|