加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    中文在线日韩| 日韩一区精品| 精品三级av在线导航| 一区二区久久| 蜜臀精品久久久久久蜜臀 | 精品国产精品| 日本不卡免费在线视频| 久久r热视频| 99热免费精品在线观看| 欧美a在线观看| 亚洲一区二区日韩| 精品久久在线| 日韩欧美看国产| 蜜臀精品久久久久久蜜臀| 欧美 日韩 国产一区二区在线视频| 亚洲一区日本| 欧美日韩精品在线一区| 日韩av中文在线观看| 久久视频在线观看| 久久精品国产999大香线蕉| 国产精品毛片久久| 亚洲欧美日韩专区| 欧美日韩国内| 久久国产小视频| 精品国产一区二区三区噜噜噜| 成人激情视频| 亚洲欧美高清| 99国内精品| 欧美日韩精品免费观看视频完整| 日韩国产精品大片| 78精品国产综合久久香蕉| 人人狠狠综合久久亚洲| 亚洲色诱最新| 欧美日韩国产欧| 波多野结衣在线观看一区二区三区| 久久一区精品| 久久精品国产999大香线蕉| 亚洲精品国产嫩草在线观看 | 国产成人黄色| 久久亚洲黄色| 亚洲国产国产亚洲一二三| 欧美aa一级| а√天堂中文在线资源8| 尤物在线精品| 亚洲美女网站| 欧美日韩国产高清| 欧美天天在线| 黄色免费成人| 亚洲欧美日韩专区| 水蜜桃久久夜色精品一区的特点 | 伊人情人综合网| 蜜桃一区二区三区| 波多野结衣在线观看一区二区三区| 欧美国产高清| 欧美区国产区| 国产欧美日韩在线一区二区 | 噜噜噜91成人网| 亚洲欧美色图| 亚洲一区日本| 91日韩视频| 日本免费一区二区三区四区| 99精品国自产在线| 国产情侣一区| 国产麻豆一区二区三区| 精品国产一区二| 欧美中文一区| 欧洲grand老妇人| 免费视频久久| 日韩一区欧美| 久久精品国产精品青草| 亚洲伊人精品酒店| 日本一区二区三区视频在线看 | 久久国产电影| 最新国产乱人伦偷精品免费网站| 日本亚州欧洲精品不卡| 高清日韩中文字幕| 欧美成人69av| 视频在线观看一区| 综合日韩av| 久久中文在线| 日本中文字幕在线一区| 欧美午夜寂寞| 一本色道久久综合| 在线成人av观看| 日本午夜一本久久久综合| 怕怕欧美视频免费大全| 久久久久欧美精品| 男人天堂欧美日韩| 欧美日韩在线精品一区二区三区激情综合| 欧美日韩少妇| 91日韩在线| 久久精品人人| 亚洲免费专区| 欧美天天综合| 视频在线不卡免费观看| 国产成人精品一区二区三区在线 | 91精品一区国产高清在线gif| 国产伦精品一区二区三区千人斩 | 成人福利一区二区| а天堂中文最新一区二区三区| 亚洲精品国产嫩草在线观看| 欧美日韩一区二区国产| 在线视频亚洲欧美中文| 欧洲杯什么时候开赛| 天堂资源在线| 国产一区不卡| 国产韩日影视精品| 欧美福利在线播放| 亚洲品质自拍| 一本色道久久综合一区| 日韩一级特黄| 91久久精品无嫩草影院| 老牛嫩草一区二区三区日本| 欧美aaaaa成人免费观看视频| 成人在线高清| 免费一区二区三区在线视频| 亚洲欧美日韩专区| 久久精品国产99久久6 | 国产一区三区在线播放| 亚洲va在线| 日韩中文视频| 亚洲一区二区三区四区电影| 亚洲欧洲日本mm| 免费视频一区| 99国产精品一区二区| 桃色av一区二区| 久久中文字幕一区二区| 热久久国产精品| 国产精品亚洲片在线播放| 一区久久精品| 亚洲国产免费| 日韩亚洲国产欧美| 欧美日韩1区| 91久久亚洲| 午夜亚洲福利| **女人18毛片一区二区| 美女视频第一区二区三区免费观看网站| 99精品热视频只有精品10| 欧美亚视频在线中文字幕免费| 欧美日韩导航| 91精品xxx在线观看| 国产精品巨作av| 日韩欧美少妇| 国产精品99久久免费观看| 性感美女一区二区在线观看| 91精品丝袜国产高跟在线| 日韩理论电影大全| 成人中文在线| 欧美xxxx性| 亚洲婷婷免费| 欧美区国产区| 久久午夜精品一区二区| 亚洲图区在线| 欧美成人精品一区二区男人小说| 国产精品亲子伦av一区二区三区| 老鸭窝一区二区久久精品| 天天射天天综合网| 影音先锋亚洲精品| 亚洲作爱视频| 日韩二区三区四区| 日韩久久一区二区三区| 精品国产aⅴ| 国产欧美一区二区三区国产幕精品| 国产精品欧美在线观看| 91影院成人| 久久精品国产亚洲5555| 日韩国产在线观看一区| 91成人免费| 亚洲午夜久久| 成人日韩av| 亚洲综合国产激情另类一区| 视频一区中文字幕精品| 国产成人精选| 亚洲专区一区| 岛国精品一区| 欧美日韩亚洲一区在线观看| 日韩av在线中文字幕| 国产精品一线| 亚洲伦理精品| 青青青免费在线视频| 欧美高清一区| 亚洲国产欧美日韩在线观看第一区| 亚洲午夜一级| 高清一区二区三区av| 日韩免费视频| 黄色精品一区| 成人另类视频| 国产精品毛片aⅴ一区二区三区| 久久久久国产一区二区| 国产精品日本一区二区三区在线| 欧美亚洲国产激情| 国产在线一区不卡| 欧美天堂一区| 丝袜亚洲另类欧美| 色婷婷精品视频| 亚洲欧美日本伦理| 亚洲日本免费| 精精国产xxx在线视频app| 伊人成人网在线看| 精品一区电影|