加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫AI6012程序、代做Java/c++編程
代寫AI6012程序、代做Java/c++編程

時間:2024-09-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



AI6012: Machine Learning Methodologies &
Applications Assignment (25 points)
Important notes: to ffnish this assignment, you are allowed to look up textbooks or
search materials via Google for reference. NO plagiarism from classmates is allowed.
The submission deadline is by 11:59 pm, Sept. 30, 2022. The ffle to be submitted
is a single PDF (no source codes are required to be submitted). Multiple submission
attempts are allowed, and the last one will be graded. A submission link is available
under “Assignments” of the course website in NTULearn.
Question 1 (10 marks): Consider a multi-class classiffcation problem of C classes.
Based on the parametric forms of the conditional probabilities of each class introduced
on the 39th Page (“Extension to Multiple Classes”) of the lecture notes of L4, derive
the learning procedure of regularized logistic regression for multi-class classiffcation
problems.
Hint: deffne a loss function by borrowing an idea from binary classiffcation, and
derive the gradient descent rules to update {w(c)}’s.
Question 2 (5 marks): This is a hands-on exercise to use the SVC API of scikitlearn
1
to
 train a SVM with the linear kernel and the rbf kernel, respectively, on a binary
classiffcation dataset. The details of instructions are described as follows.
1. Download the a9a dataset from the LIBSVM Dataset page.
This is a preprocessed dataset of the Adult dataset in the UCI Irvine Machine
Learning Repository
2
, which consists of a training set (available here) and a test
set (available here).
Each ffle (the train set or the test set) is a text format in which each line represents
a labeled data instance as follows:
label index1:value1 index2:value2 ...
where “label” denotes the class label of each instance, “indexT” denotes the
T-th feature, and valueT denotes the value of the T-th feature of the instance.
1Read Pages 63-64 of the lecture notes of L5 for reference
2The details of the original Adult dataset can be found here.
1This is a sparse format, where only non-zero feature values are stored for each
instance. For example, suppose given a data set, where each data instance has 5
dimensions (features). If a data instance whose label is “+1” and the input data
instance vector is [2 0 2.5 4.3 0], then it is presented in a line as
+1 1:2 3:2.5 4:4.3
Hint: sciki-learn provides an API (“sklearn.datasets.load svmlight ffle”) to load
such a sparse data format. Detailed information is available here.
2. Regarding the linear kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter C in
{0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table. Note that for all the
other parameters, you can simply use the default values or specify the speciffc
values you used in your submitted PDF ffle.
Table 1: The 3-fold cross-validation results of varying values of C in SVC with linear
kernel on the a9a training set (in accuracy).
C = 0.01 C = 0.05 C = 0.1 C = 0.5 C = 1
? ? ? ? ?
3. Regarding the rbf kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter gamma
(i.e., σ
2 on the lecture notes) in {0.01, 0.05, 0.1, 0.5, 1} and different values of
the parameter C in {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table.
Note that for all the other parameters, you can simply use the default values or
specify the speciffc values you used in your submitted PDF ffle.
Table 2: The 3-fold cross-validation results of varying values of gamma and C in SVC
with rbf kernel on the a9a training set (in accuracy).
Hint: there are no speciffc APIs that integrates cross-validation into SVMs in
sciki-learn. However, you can use some APIs under the category “Model Selection
→ Model validation” to implement it. Some examples can be found here.
4. Based on the results shown in Tables **2, determine the best kernel and the best
parameter setting. Use the best kernel with the best parameter setting to train a
SVM using the whole training set and make predictions on test set to generate
the following table:
2Table 3: Test results of SVC on the a9a test set (in accuracy).
Specify which kernel with what parameter setting
Accuracy of SVMs ?
Question 3 (5 marks): The optimization problem of linear soft-margin SVMs can
be re-formulated as an instance of empirical structural risk minimization (refer to Page
37 on L5 notes). Show how to reformulate it. Hint: search reference about the hinge
loss.
Question 4 (5 marks): Using the kernel trick introduced in L5 to extend the regularized
linear regression model (L3) to solve nonlinear regression problems. Derive a
closed-form solution (i.e., to derive a kernelized version of the closed-form solution on
Page 50 of L3).


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:公認口碑最好的十個莆田微商,選擇這10個微商沒錯的
  • 下一篇:COMPSCI 315代做、代寫Python/Java語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美三级午夜理伦三级在线观看 | 日日摸夜夜添夜夜添亚洲女人| 天堂成人娱乐在线视频免费播放网站| 久久永久免费| 日韩aaaa| 国产一区清纯| 日韩在线精品强乱中文字幕| 国产欧美日韩一区二区三区在线| 精品国产精品| 欧美欧美在线| 一区二区日本视频| 在线看片国产福利你懂的| 久久一区二区三区电影| 国产一区2区| 国产日韩欧美一区在线| 欧美成人a交片免费看| 欧美日韩少妇| 99精品视频在线观看免费播放| 久久99国内| 亚洲欧美在线专区| 日日狠狠久久| 日韩精品影院| av中文字幕在线观看第一页| 最新欧美人z0oozo0| 亚洲欧美日韩综合国产aⅴ| 欧美黄在线观看| 91久久久久久白丝白浆欲热蜜臀| 视频在线观看一区| 黄色综合网站| 精品日韩毛片| 天堂综合网久久| 青青草97国产精品麻豆| 视频精品国内| 久久天堂久久| 国产欧美日韩| 国产精选久久| 一区二区三区国产精华| 日韩精品国产欧美| 久久国产三级精品| 国产精品成人国产| 成人在线观看免费视频| 中文av在线全新| 欧美激情欧美| 国产免费拔擦拔擦8x在线播放 | 国产午夜久久av| 亚洲三级国产| 日本美女视频一区二区| 久久精品毛片| 日韩精品久久理论片| 美日韩一区二区| 久久精品国产亚洲高清剧情介绍 | 精品免费av一区二区三区| 国产福利片在线观看| 都市激情国产精品| 亚洲精品mv| 少妇视频一区| 国产精品亚洲一区二区三区在线观看| sm捆绑调教国产免费网站在线观看| 午夜一区在线| 免费观看日韩电影| 水蜜桃精品av一区二区| 都市激情亚洲一区| 色天使综合视频| 国精品产品一区| 日韩精品乱码av一区二区| 日本aⅴ精品一区二区三区| 日本va欧美va欧美va精品| 午夜天堂精品久久久久| 国产亚洲精品美女久久久久久久久久| 国产一区二区精品福利地址| 亚洲v天堂v手机在线| 亚洲综合影院| 女同一区二区三区| 91超碰国产精品| 国产毛片久久| 午夜久久中文| 国产欧美综合一区二区三区| 欧美激情91| 国产日韩在线观看视频| 精品国精品国产自在久国产应用| 亚洲一级黄色| 三级在线观看一区二区| 日韩理论视频| 日韩精品国产欧美| 国模吧精品视频| 精品国产91久久久久久浪潮蜜月| 亚洲小说欧美另类婷婷| 先锋影音国产一区| 欧美日韩精品一区二区三区视频| 欧美一区二区三区久久精品| 亚洲午夜剧场| 国产精品白浆| 国产亚洲毛片在线| 日日夜夜天天综合| 亚洲三级在线| 成人三级视频| 亚洲欧美日韩精品一区二区 | 91免费精品| 欧美一区激情| 日韩av在线播放中文字幕| 久久精品综合| 热久久国产精品| 国产精品亚洲综合久久| 久久不见久久见免费视频7| 久久99精品久久久久久欧洲站| 午夜激情久久| 日韩中文影院| 国产精品亚洲二区| 色综合久久中文| 日本一区二区高清不卡| 在线观看一区| 久久九九精品| 中文字幕不卡三区视频| 亚洲精品免费观看| av资源中文在线天堂| 亚洲一区二区毛片| 欧美伊人久久| 99精品在免费线中文字幕网站一区| 精品91久久久久| 国产精品久久久久久久久久齐齐| 国产影视一区| 亚洲美洲欧洲综合国产一区| 国产成+人+综合+亚洲欧美| 日韩不卡一区二区| 在线视频精品| 麻豆视频观看网址久久| 天堂网av成人| 超碰这里只有精品| 综合成人在线| 国产精品xx| 最新国产精品视频| 亚洲欧美日韩视频二区| 欧美日韩综合| 亚洲高清影视| 日本午夜一本久久久综合| 亚洲不卡av不卡一区二区| 天天综合网站| 大型av综合网站| a日韩av网址| 亚洲欧洲国产精品一区| 欧美freesextv| 日本一区二区三区视频在线看| 99视频+国产日韩欧美| 国产精品va| 999在线观看精品免费不卡网站| 久久精品72免费观看| 亚洲成人tv| 欧美亚洲专区| 不卡中文一二三区| 在线观看一区| 国产一区二区精品| 国产videos久久| 免费不卡在线观看| 日韩电影在线观看网站| 激情黄产视频在线免费观看| 日韩精品视频中文字幕| 欧美wwwww| 99香蕉久久| 成人国产在线| 亚洲女同一区| 国产成人av| 色在线视频观看| 久久久久蜜桃| 亚洲色图二区| 日韩在线卡一卡二| 伊人久久大香线蕉av超碰| 亚洲精品一区三区三区在线观看| 色爱综合av| 亚洲色图88| 欧美激情欧美| 青青久久av| 亚洲日本免费电影| 中文字幕高清在线播放| 国产韩国精品一区二区三区| 久久国产直播| 国产夫妻在线| 人体久久天天| 在线成人超碰| 国产传媒在线| 在线日韩视频| 国产一区二区三区四区二区| 日本蜜桃在线观看视频| 999久久久免费精品国产| 亚洲日本中文| 欧美香蕉视频| 黄页网站一区| 亚洲国产中文在线二区三区免| 亚洲国产99| 美女诱惑黄网站一区| 欧美交a欧美精品喷水| 国产精品九九| 欧美日韩精品免费观看视欧美高清免费大片| 色吊丝一区二区| 美女久久99| 99精品久久久| а√天堂中文资源在线bt| 极品少妇一区二区三区| 日韩激情综合| 欧美全黄视频| 国产一区一一区高清不卡 |