加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫3007_7059 Artificial Intelligence 3007_7059
代寫3007_7059 Artificial Intelligence 3007_7059

時(shí)間:2024-09-08  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


Assignment 2: Artificial Intelligence (3007_7059 Combined)

Assignment 2

The dataset is available here

(https://myuni.adelaide.edu.au/courses/95211/files/1453***/download)

Part 1 Wine Quality Prediction with 1NN (K-d Tree)

Wine experts evaluate the quality of wine based on sensory data. We could also collect the features of wine from objective tests, thus the objective features could be used to predict the expert’s judgment, which is the quality rating of the wine. This could be formed as a supervised learning problem with the objective features as the data features and wine quality rating as the data labels.

In this assignment, we provide objective features obtained from physicochemical statistics for each white wine sample and its corresponding rating provided by wine experts. You are expected to implement the k-d tree (KDT) and use the training set to train your k-d tree, then provide wine quality prediction on the test set by searching the tree

Wine quality rating is measured in the range of 0-9. In our dataset, we only keep the samples for quality ratings 5, 6 and 7. The 11 objective features are listed as follows [1]:

f_acid : fixed acidity

v_acid : volatile acidity

c_acid : citric acid

res_sugar : residual sugar

chlorides : chlorides

fs_dioxide : free sulfur dioxide

ts_dioxide : total sulfur dioxide

density : density

pH : pH

sulphates : sulphates

alcohol : alcohol

Explanation of the Data.

train: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

 

sulphates

alcohol

quality

8.10

0.270

0.41

1.45

0.033

11.0

63.0

0.9**80

2.99

0.56

12.0

5

8.60

0.230

0.40

4.20

0.035

17.0

109.0

0.99**0

3.14

0.53

9.7

5

7.**

0.180

0.74

1.20

0.040

16.0

75.0

0.99200

3.18

0.63

10.8

5

8.30

0.420

0.62

19.25

0.040

41.0

172.0

1.00020

2.98

0.67

9.7

5

6.50

0.310

0.14

7.50

0.044

34.0

133.0

0.99550

3.22

0.50

9.5

5

test: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

pH

sulphates

alcohol

7.0

0.360

0.14

11.60

0.043

35.0

228.0

0.99770

3.13

0.51

8.**0000

6.3

0.270

0.18

7.70

0.048

45.0

186.0

0.99620

3.23

0.**

9.000000

7.2

0.2**

0.20

7.70

0.046

51.0

174.0

0.99582

3.16

0.52

9.500000

7.1

0.140

0.35

1.40

0.039

24.0

128.0

0.99212

2.97

0.68

10.400000

7.6

0.480

0.28

10.40

0.049

57.0

205.0

0.99748

3.24

0.45

9.300000

1.1 1NN (K-d Tree)

From the given training data, our goal is to learn a function that can predict the wine quality rating of a wine sample, based on the objective features. In this assignment, the predictor function will be constructed as a k-d tree. Since the attributes (objective features) are continuously valued, you shall apply the k-d tree algorithm for continuous data, as outlined in Algorithms 1. It is the same as taught in the lecture. Once the tree is constructed, you will search the tree to find the **nearest neighbour of a query point and label the query point. Please refer to the search logic taught in the lecture to write your code for the 1NN search.

 

Algorithm 1 BuildKdTree(P, D) Require: A set of points P of M dimensions and current depth D. 1: if P is empty then 2: return null 3: else if P only has one data point then 4: Create new node node 5: node.d ← d 6: node.val ← val 7: node.point ← current point 8: return node 9: else 10: d ← D mod M 11: val ← Median value along dimension among points in P. 12: Create new node node. 13: node.d ← d 14: node.val ← val 15: node.point ← point at the median along dimension d 16: node.left ← BuildKdTree(points in P for which value at dimension d is less than or equal to val, D+1) 17: node.right ← BuildKdTree(points in P for which value at dimension d is greater than val, D+ 1) 18: return node 19: end if

Note: Sorting is not necessary in some cases depending on your implementation. Please figure out whether your code needs to sort the number first. Also, if you compute the median by yourself, when there’s an even number of points, say [1,2,3,4], the median is 2.5.

 

1.2 Deliverable

Write your k-d tree program in Python 3.6.9 in a file called nn_kdtree.py. Your program must be able to run as follows:

$ python nn_kdtree.py [train] [test] [dimension]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[dimension] is used to decide which dimension to start the comparison. (Algorithm 1)

Given the inputs, your program must construct a k-d tree (following the prescribed algorithms) using the training data, then predict the quality rating of each of the wine samples in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

1.3 Python Libraries

You are allowed to use the Python standard library to write your k-d tree learning program (see https://docs.python.org/3/library/(https://docs.python.org/3/library/) for the components that make up the Python v3.6.9 standard library). In addition to the standard library, you are allowed to use NumPy and Pandas. Note that the marking program will not be able to run your program to completion if other third-party libraries are used. You are NOT allowed to use implemented tree structures from any Python package, otherwise the mark will be set to 0.

1.4 Submission

You must submit your program files on Gradescope. Please use the course code NPD6JD to enroll in the course. Instructions on accessing Gradescope and submitting assignments are provided at https://help.gradescope.com/article/5d3ifaeqi4-student-canvas (https://help.gradescope.com/article/5d3ifaeqi4-student-canvas) .

For undergraduates, please submit your k-d tree program (nn_kdtree.py) to Assignment 2 - UG.

1.5 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

 

1.6 Debugging Suggestions

Step-by-step debugging by checking intermediate values/results will help you to identify the problems of your code. This function is enabled by most of the Python IDE. If not in your case, you could also print the intermediate values out. You could use sample data or create data in the same format for debugging

1.7 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 15% (undergrads) or 12% (postgrads) of the overall course mark. For undergraduates, bonus marks of 3% will be awarded if Section 2 is completed correctly.

There will be no further manual inspection/grading of your program to award marks based on coding style, commenting, or “amount” of code written.

1.8 Using other source code

You may not use other source code for this assignment. All submitted code must be your own work written from scratch. Only by writing the solution yourself will you fully understand the concept.

1.9 Due date and late submission policy

This assignment is due by 11:59 pm Friday 3 May 2024. If your submission is late, the maximum mark you can obtain will be reduced by 25% per day (or part thereof) past the due date or any extension you are granted.

Part 2 Wine Quality Prediction with Random Forest

For postgraduate students, completing this section will give you the remaining 3% of the assignment marks. In this task, you will extend your knowledge learned from k-d tree to k-d forest. The process for a simplified k-d forest given N input-output pairs is:

1. Randomly select a set of N' distinct samples (i.e., no duplicates) where N' = N' * 80% (round to integer). This dataset is used for constructing a k-d tree (i.e., the root node of the k-d tree)

 

2. Build a k-d tree on the dataset from (1) and apply Algorithm 1.

3. Repeat (1) and (2) until reaching the maximum number of trees.

This process is also shown in Algorithm 2. In k-d forest learning, a sample set is used to construct a k-d tree. That is to say, different trees in the forest could have different root data. For prediction, the k-d forest will choose the most voted label as its prediction. For the wine quality prediction task, you shall apply Algorithm 2 for k-d forest learning and apply Algorithm 3 to predict the wine quality for a new wine sample. To generate samples, please use the following (incomplete) code to generate the same samples as our testing scripts:

import random ... N= ... N’=... index_list = [i for i in range(0, N)] # create a list of indexes for all data sample_indexes = [] for j in range(0,n_tree): random.seed(rand_seed+j) # random_seed is one of the input parameters subsample_idx = random.sample(index_list, k=N’) # create unique N’ indices sample_indexes = sample_indexes + subsample_id Algorithm 2 KdForest(data, d_list, rand_seed) Require:data in the form. of N input-output pairs ,d_list a list of depth 1: forest ← [] 2: n_trees ← len(d_list) 3: sample_indexes ← N'*n_trees integers with value in [0,N) generated by using above method 4: count ← 0 5: for count < n_trees do 6: sampled_data ← N' data pairs selected by N' indexes from sample_indexes sequentially 7: n = BuildKdTree(sampled_data, d_list[count]) ⇒ Algorithm 1 8: forest.append(n)

 

9: end for 10: return forest Algorithm 3 Predict_KdForest(forest, data) Require: forest is a list of tree roots, data in the form. of attribute values x. 1: labels ← [] 2: for Each tree n in the forest do 3: label ← 1NN search on tree n 4: labels.append(n) 5: end for 6: return the most voted label in labels

2.1 Deliverables

Write your random forest program in Python 3.6.9 in a file called nn_kdforest.py. Your program must be able to run as follows

$ python nn_kdforest.py [train] [test] [random_seed] [d_list]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[random_seed] is the seed value generate random values.

[d_list] is a list of depth values (in Algorithm 2 n_trees==len(d_list))

Given the inputs, your program must learn a random forest (following the prescribed algorithms) using the training data, then predict the quality rating of each wine sample in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

Submit your program in the same way as the submission for Sec. 1. For postgraduates, please submit your learning programs (nn_kdtree.py and nn_kdforest.py) to Assignment 2 - PG. The due date, late submission policy, and code reuse policy are also the same as in Sec 1.

 

2.2 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

2.3 Debugging Suggestions

In addition to Sec. 1.6, another value worth checking when debugging is (but not limited to): the sample_indexes – by setting a random seed, the indexes should be the same each time you run the code

2.4 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 3% of the overall course mark.

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:代寫FINC5090、代做Python語(yǔ)言編程
  • 下一篇:MGMT20005代寫、c/c++,Python程序代做
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    午夜精品影院| 99久久激情| 国产在线成人| 中文在线а√天堂| 综合激情在线| 久久精品二区三区| av成人在线网站| 亚洲激情av| 日本麻豆一区二区三区视频| 卡一精品卡二卡三网站乱码| 深夜成人在线| 日本在线视频一区二区三区| 老司机精品视频网站| 中文字幕一区二区精品区| 高清不卡亚洲| 最新亚洲激情| 色婷婷久久久| 51vv免费精品视频一区二区| 日韩精品一二三| 日韩美女国产精品| 蜜桃久久av一区| 蜜桃一区二区三区| 主播大秀视频在线观看一区二区| 日韩电影在线免费观看| 捆绑调教一区二区三区| 51精产品一区一区三区| 国产suv精品一区二区四区视频| a国产在线视频| 2020国产精品极品色在线观看| 亚洲精选91| 国产日韩1区| 午夜久久99| 亚洲成人二区| 高清欧美性猛交xxxx黑人猛| 亚洲传媒在线| 色综合天天综合网中文字幕| 九九99久久精品在免费线bt| 亚洲欧洲一二区| 亚洲精品精选| 免费在线成人| 婷婷久久免费视频| 波多野结衣的一区二区三区| 青青草综合网| 另类中文字幕网| 久久精品国产亚洲高清剧情介绍| 国户精品久久久久久久久久久不卡| 超碰成人免费| 国产福利资源一区| 都市激情亚洲欧美| 极品尤物一区| 成人三级视频| 日韩精品首页| 久久蜜桃精品| 久久精品电影| 仙踪林久久久久久久999| 国内精品福利| 99热这里只有成人精品国产| 久久亚洲黄色| 欧美日韩一区二区国产| 久久影视三级福利片| 欧美国产精品| 国产精品一区三区在线观看| 蜜臀国产一区| 男人天堂视频在线观看| 黄色日韩精品| 亚洲欧美日韩国产综合精品二区 | 国产一区91| 国产精品婷婷| 捆绑调教日本一区二区三区| 亚洲天堂免费电影| 日韩精品第二页| 男女精品视频| 欧美国产一区二区三区激情无套| av在线最新| 先锋影音一区二区| 国产精品激情| 日韩福利视频一区| 成人在线免费观看91| 亚洲特级毛片| 爽爽淫人综合网网站| 日韩午夜电影网| 久久精品日产第一区二区| 亚洲人成毛片在线播放女女| 综合伊思人在钱三区| 精品捆绑调教一区二区三区 | 老司机午夜精品| 91成人app| 91精品国产自产精品男人的天堂| 日本欧美一区二区三区乱码| 久久av导航| 久久97久久97精品免视看秋霞| 亚洲图片在线| 欧美r级电影| 欧美日韩五区| 国产剧情一区二区在线观看| 日韩三级不卡| 婷婷亚洲最大| 天堂√8在线中文| 麻豆91在线播放| 日韩高清一区| 狠狠综合久久av一区二区老牛| 亚洲天堂av影院| 国产精品扒开腿做爽爽爽软件| 久久久久毛片免费观看| 欧美/亚洲一区| 久久爱91午夜羞羞| 中文字幕一区二区精品区| 欧美日韩一区二区三区在线电影| 日韩天堂av| 日韩久久一区| 日本成人精品| 最新日韩欧美| 久久精品国产99国产| 久久九九精品视频| 亚洲一区欧美二区| 神马久久资源| 亚洲第一福利专区| 黄色工厂这里只有精品| 成人亚洲免费| 日韩精品久久久久久久软件91| 99国产精品视频免费观看一公开| 日本久久久久| 99这里只有精品视频| 日韩精品一卡二卡三卡四卡无卡| 青青青爽久久午夜综合久久午夜| 一区二区精彩视频| 免费在线观看精品| 欧美激情一区| 蜜臀91精品国产高清在线观看| 女海盗2成人h版中文字幕| 日本欧美三级| 亚洲免费一区二区| 亚洲精品少妇| 激情综合网站| 99精品免费视频| 久久蜜桃精品| 福利精品一区| 欧美激情影院| 欧美日韩在线精品一区二区三区激情综合| 亚洲区小说区| 老司机精品导航| 国产日产一区| 欧美在线综合| 国产一区不卡| 免费成人美女在线观看.| 中文字幕免费精品| 伊人成人在线视频| 欧美日韩ab| 乱人伦精品视频在线观看| 亚洲人体在线| 丝袜亚洲另类欧美| 国产午夜一区| 久久久男人天堂| 成人在线免费观看视频| 国产一区二区主播在线| 久久久久中文| 免费在线亚洲| 午夜视频一区| av成人在线网站| 免费成人在线网站| 日韩激情视频在线观看| sm捆绑调教国产免费网站在线观看 | 激情久久五月| 麻豆91在线看| 亚洲欧美日韩国产一区二区| 国产一区二区精品久| 91麻豆国产自产在线观看亚洲| 亚洲最新av| 91综合在线| 成人中文视频| 亚洲国产一区二区精品专区| 一本久道久久综合婷婷鲸鱼| 亚洲国产国产| 日本免费久久| 在线日韩欧美| 91日韩在线| 黄色网一区二区| 久久精品999| 亚洲欧美日韩综合国产aⅴ| 国产一区二区三区四区五区传媒| 97精品国产| 亚洲高清毛片| 亚洲国产合集| 成人交换视频| 伊人久久大香线蕉综合热线| 日韩电影在线一区二区三区| 精品日韩视频| 伊人影院久久| 麻豆久久一区| 久久精品一区二区国产| 亚洲综合国产激情另类一区| 蜜桃精品视频| 在线精品在线| 少妇视频在线观看| 亚洲国产成人精品女人| 日韩福利电影在线| 日精品一区二区| caoporn视频在线| 天天影视欧美综合在线观看| 日韩中文字幕无砖|