加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩香蕉视频| 日本91福利区| japanese国产精品| 国产一区二区三区探花| 亚洲女同av| 激情欧美一区| 欧美日韩xxxx| 成人在线免费av| av成人黄色| 国产精品对白| 国产不卡av一区二区| 91天天综合| 日韩一级免费| 精品中国亚洲| 无码日韩精品一区二区免费| 亚洲ww精品| 视频一区中文字幕国产| 亚洲h色精品| 日韩高清一级| 一区二区电影| 亚洲国产精选| 在线天堂资源| 亚洲一区二区伦理| 1024成人| 欧美福利在线播放网址导航| 成人日韩视频| 精品123区| 毛片在线网站| 亚洲欧美视频| 激情欧美日韩一区| 大伊香蕉精品在线品播放| 国产精品一在线观看| 久久精品国产成人一区二区三区| 欧美疯狂party性派对| 亚洲国产精品综合久久久| 久久成人福利| 第一区第二区在线| 麻豆国产一区| 亚欧日韩另类中文欧美| 国产精品v亚洲精品v日韩精品| 精品69视频一区二区三区| freexxx性亚洲精品| 久久综合影视| 亚洲一区日本| 国产精品嫩草99av在线| 欧美1区视频| 国产精品av久久久久久麻豆网| 国产伦乱精品| 精品香蕉视频| 久久97久久97精品免视看秋霞| 66精品视频在线观看| 69精品国产久热在线观看| 日韩黄色一级片| 日韩最新在线| 日产国产欧美视频一区精品| 国产一区二区三区四区五区传媒| 国产精品777777在线播放 | 欧美日韩hd| 精品一区三区| 91成人精品视频| 91精品电影| 国产模特精品视频久久久久| 国产精品美女| 人妖欧美一区二区| 国产精品久久久久无码av| 蜜臀91精品一区二区三区 | 成人在线观看免费播放| 国产精品久久久久77777丨| 久久精品国产一区二区三| 亚洲国产日韩在线| 国产一区二区三区天码| 色播一区二区| 色爱av综合网| 亚洲欧洲一区二区天堂久久| 国产一区导航| 综合日韩av| 日韩成人综合网站| 欧美精品18| 久久久91麻豆精品国产一区| 国产成人高清精品免费5388| 精品美女视频| 伊人影院久久| 多野结衣av一区| www.一区| av在线亚洲一区| 日韩精品成人| 性欧美xxxx免费岛国不卡电影| 黄色一区二区三区四区| 久久亚洲视频| 99只有精品| 亚洲综合激情在线| 日韩欧美激情电影| 伊人精品一区| 97精品视频| 久久精品男女| 日韩电影一区二区三区四区| 欧美日韩一二三四| 欧美在线综合| 日韩三区四区| 国产欧美69| 久久久久99| 男女视频一区二区| 国产欧美日韩一级| 亚州综合一区| 欧美二区不卡| 亚洲人成午夜免电影费观看| 日韩高清不卡一区| 视频一区日韩精品| 91精品动漫在线观看| 无遮挡爽大片在线观看视频| 日本欧美久久久久免费播放网| 国产日韩在线观看视频| 伊人青青综合网| 欧洲成人一区| 亚洲bt欧美bt精品777| 亚洲天堂成人| 欧美aaa大片视频一二区| 亚洲素人在线| 在线免费观看日本欧美爱情大片| 欧美xxxhd| 国产探花一区在线观看| 欧美成人精品| 成人免费一区| 国产免费av国片精品草莓男男| **女人18毛片一区二区| av在线一区不卡| 精品久久亚洲| 亚洲欧美成人综合| 亚洲精品字幕| 欧洲视频一区| 日韩成人综合网站| 加勒比视频一区| 中文av在线全新| 日韩av成人高清| 丝袜诱惑制服诱惑色一区在线观看 | 男人的天堂亚洲一区| 欧美日本在线| 欧美日韩精品免费观看视频完整| 日韩毛片一区| 国产精品2023| 日韩精品第一区| 精品久久亚洲| 色综合咪咪久久网| 久久成人av| 性色一区二区三区| 国产成人av| 国产精品腿扒开做爽爽爽挤奶网站| 日日噜噜夜夜狠狠视频欧美人| 精品国产精品久久一区免费式 | caoporn视频在线| 亚洲免费观看高清完整版在线观| 中文在线一区| 亚洲男人在线| 国产一区二区你懂的| av在线亚洲一区| 亚洲欧美日韩在线观看a三区| 综合在线视频| 亚洲免费高清| 91精品一区| 视频一区视频二区中文字幕| 亚洲裸色大胆大尺寸艺术写真| 人禽交欧美网站| 一区二区三区视频免费视频观看网站 | 国产 日韩 欧美一区| 精品视频日韩| 久久精品日韩欧美| 国产精品88久久久久久| 国产精品观看| 久久亚洲欧洲| 久久久91麻豆精品国产一区| 欧美a级在线观看| 99精品视频在线观看免费播放| 日韩综合小视频| 影院欧美亚洲| 亚洲精品**不卡在线播he| 成人福利视频| 成人羞羞视频在线看网址| 日韩国产高清在线| 香蕉久久国产| 大奶一区二区三区| 欧美亚洲一区| 久热re这里精品视频在线6| 日韩三级网址| 久久激五月天综合精品| 狠狠爱成人网| 日韩一区二区三区高清在线观看| 日本一区二区三区视频在线| 欧洲杯半决赛直播| 亚洲aaa级| 国产成人a视频高清在线观看| 欧美美女一区| 日韩极品在线| 久久精品国产久精国产| 亚洲欧美日韩国产一区| 国产一区福利| 一区二区日韩欧美| 欧美色网一区| 亚洲欧美激情诱惑| 999国产精品永久免费视频app| 欧美区一区二区|