加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CSCI 4210 — Operating Systems

時(shí)間:2024-08-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


CSCI 4210  Operating Systems

Simulation Project Part II (document version 1.0)

Processes and CPU Scheduling

Overview

•  This assignment is due in Submitty by 11:59PM EST on Thursday, August 15, 2024

•  This project is to be completed either individually or in a team of at most three students; as with Project Part I, form your team within the Submitty gradeable, but do not submit any code until we announce that auto-grading is available

•  NEW: If you worked on a team for PartI, feel free to change your team for Part II; all code is reusable from Part I even if you change teams

•  Beyond your team (or yourself if working alone), do not share your code; however, feel free to discuss the project content and your findings with one another on our Discussion Forum

•  To appease Submitty, you must use one of the following programming languages:  C, C++, or Python (be sure you choose only one language for your entire implementation)

• You will have ve penalty-free submissions on Submitty, after which points will slowly be deducted, e.g., -1 on submission #6, etc.

• You can use at most three late days on this assignment; in such cases, each team member must use a late day

• You will have at least three days before the due date to submit your code to Submitty; if the auto-grading is not available three days before the due date, the due date will be 11:59PM EDT three days after auto-grading becomes available

•  NEW: Given that your simulation results might not entirely match the expected output on Submitty, we will cap your auto-graded grade at 50  points even though there will be more than 50 auto-graded points per language available in Submitty

• All submitted code must successfully compile and run on Submitty, which currently uses Ubuntu v22.04.4 LTS

• If you use C or C++, your program must successfully compile via gcc org++ with no warning messages when the -Wall  (i.e., warn all) compiler option is used; we will also use -Werror, which will treat all warnings as critical errors; the -lm flag will also be included; the gcc/g++ compiler is currently version 11.4.0 (Ubuntu  11.4.0-1ubuntu1~22.04)

•  For source file naming conventions, be sure to use * .c for C and * .cpp for C++; in either case, you can also include * .h files

• For Python, you must use python3, which is currently Python 3.10.12; be sure to name your main Python file project .py; also be sure no warning messages or extraneous output occur during interpretation

•  Please “flatten” all directory structures to a single directory of source files

•  Note that you can use square brackets in your code

Project specifications

For Part II of our simulation project, given the set of processes pseudo-randomly generated in Part I, you will implement a series of simulations of a running operating system. The overall focus will again be on processes, assumed to be resident in memory, waiting to use the CPU. Memory and the I/O subsystem will not be covered in depth in either part of this project.

Conceptual design  (from Part I)

process is defined as a program in execution.  For this assignment, processes are in one of the following three states, corresponding to the picture shown further below.

•  RUNNING: actively using the CPU and executing instructions

•  READY: ready to use the CPU, i.e., ready to execute a CPU burst

• WAITING: blocked on I/O or some other event

RUNNING                      READY                                   WAITING  (on  I/O) STATE                     STATE                                     STATE

+-----+                                                             +---------------------+

|           |          +-------------------+          |                                          |

|  CPU   |   <==  |         |         |         |         |              |         I/O  Subsystem          |

|           |          +-------------------+          |                                          |

+-----+           <<<  queue  <<<<<<<<<           +---------------------+

Processes in the READY  state reside in a queue called the ready queue.  This queue is ordered based on a configurable CPU scheduling algorithm.  You will implement specific CPU scheduling algorithms in Part II of this project.

All implemented algorithms (in Part II) will be simulated for the same  set  of processes, which will therefore support a comparative analysis of results. In Part I, the focus is on generating useful sets of processes via pseudo-random number generators.

Back to the conceptual model, when a process is in the READY state and reaches the front of the queue, once the CPU is free to accept the next process, the given process enters the RUNNING state and starts executing its CPU burst.

After each CPU burst is completed, if the process does not terminate, the process enters the WAITING  state, waiting for an I/O operation to complete (e.g., waiting for data to be read in from a file).  When the I/O operation completes, depending on the scheduling algorithm, the process either (1) returns to the READY  state and is added to the ready queue or (2) preempts the currently running process and switches into the RUNNING state.

Note that preemptions occur only for certain algorithms.

Algorithms — (Part II)

The four algorithms that you must simulate are first-come-first-served (FCFS); shortest job first (SJF); shortest remaining time (SRT); and round robin (RR). When you run your program, all four algorithms are to be simulated in succession with the same initial set of processes.

Each algorithm is summarized below.

First-come-first-served  (FCFS)

The FCFS algorithm is a non-preemptive algorithm in which processes simply line up in the ready queue, waiting to use the CPU. This is your baseline algorithm.

Shortest job first  (SJF)

In SJF, processes are stored in the ready queue in order of priority based on their anticipated CPU burst times.  More specifically, the process with the shortest predicted CPU burst time will be selected as the next process executed by the CPU. SJF is non-preemptive.

Shortest remaining time  (SRT)

The SRT algorithm is a preemptive version of the SJF algorithm. In SRT, when a process arrives, if it has a predicted CPU burst time that is less than the remaining predicted time of the currently running process, a preemption occurs.  When such a preemption occurs, the currently running process is added to the ready queue based on priority, i.e., based on its remaining predicted CPU burst time.

Round robin  (RR)

The RR algorithm is essentially the FCFS algorithm with time slice t slice.  Each process is given t slice  amount of time to complete its CPU burst. If the time slice expires, the process is preempted and added to the end of the ready queue.

If a process completes its CPU burst before a time slice expiration, the next process on the ready queue is context-switched in to use the CPU.

For your simulation, if a preemption occurs and there are no other processes on the ready queue, do not perform a context switch. For example, given process G is using the CPU and the ready queue is empty, if process G is preempted by a time slice expiration, do not context-switch process G back to the empty queue; instead, keep process G running with the CPU and do not count this as a context switch. In other words, when the time slice expires, check the queue to determine if a context switch should occur.

 

Simulation configuration  (extended from Part I)

The key to designing a useful simulation is to provide a number of configurable parameters. This allows you to simulate and tune for a variety of scenarios, e.g., a large number of CPU-bound processes, difering average process interarrival times, multiple CPUs, etc.

Define the simulation parameters shown below as tunable constants within your code, all of which will be given as command-line arguments. In Part II of the project, additional parameters will be added.

•  *(argv+1):  Define n as the number of processes to simulate.  Process IDs are assigned a two-character code consisting of an uppercase letter from A to Z followed by a number from

0 to 9. Processes are assigned in order A0, A1, A2, . . ., A9, B0, B1, . . ., Z9.

•  *(argv+2): Definen cpu as the number of processes that are CPU-bound. For this project, we will classify processes as I/O-bound or CPU-bound.  The n cpu   CPU-bound processes, when generated, will have CPU burst times that are longer by a factor of 4 and will have I/O burst times that are shorter by a factor of 8.

•  *(argv+3):  We will use a pseudo-random number generator to determine the interarrival times  of CPU bursts.  This command-line argument, i.e. seed, serves as the seed for the pseudo-random number sequence. To ensure predictability and repeatability, use srand48() with this given seed before simulating each  scheduling algorithm and drand48() to obtain the next value in the range [0.0, 1.0). Since Python does not have these functions, implement an equivalent 48-bit linear congruential generator, as described in the man page for these functions in C.

•  *(argv+4): To determine interarrival times, we will use an exponential distribution, as illus- trated in the exp-random .c example. This command-line argument is parameter λ; remember

that λ/1 will be the average random value generated, e.g., if λ = 0.01, then the average should be appoximately 100.

In the exp-random .c example, use the formula shown in the code, i.e., λ/− ln r.

•  *(argv+5):  For the exponential distribution, this command-line argument represents the upper bound for valid pseudo-random numbers.  This threshold is used to avoid values far down the long tail of the exponential distribution.  As an example, if this is set to 3000, all generated values above 3000 should be skipped. For cases in which this value is used in the ceiling function (see the next page), be sure the ceiling is still valid according to this upper bound.

•  *(argv+6): Define tcs  as the time, in milliseconds, that it takes to perform a context switch. Specifically, the first half of the context switch time (i.e., 2/tcs) is the time required to remove the given process from the CPU; the second half of the context switch time is the time required to bring the next process in to use the CPU. Therefore, require tcs  to be a positive even integer.

 

•  *(argv+7): For the SJF and SRT algorithms, since we do not know the actual CPU burst times beforehand, we will rely on estimates determined via exponential averaging.  As such, this command-line argument is the constant Q, which must be a numeric floating-point value in the range [0; 1].

Note that the initial guess for each process is τ0  = λ/1 .

Also, when calculating τ values, use the “ceiling” function for all calculations.

•  *(argv+8): For the RR algorithm, define the time slice value,t slice, measured in milliseconds. Require t slice  to be a positive integer.

Pseudo-random numbers and predictability  (from Part I)

A key aspect of this assignment is to compare the results of each of the simulated algorithms with one another given the same initial conditions, i.e., the same initial set of processes.

To ensure each CPU scheduling algorithm runs with the same set of processes, carefully follow the algorithm below to create the set of processes.

For each of the n processes, in order A0 through Z9, perform the steps below, with CPU-bound processes generated first. Note that all generated values are integers.

Define your exponential distribution pseudo-random number generation function as next_exp() (or another similar name).

1. Identify the initial process arrival time as the “floor” of the next random number in the sequence given by next_exp(); note that you could therefore have a zero arrival time

2. Identify the number of CPU bursts for the given process as the “ceiling” of the next random number generated from the uniform distribution obtained via drand48() multiplied by **; this should obtain a random integer in the inclusive range [1; **]

3. For each  of these CPU bursts, identify the CPU burst time and the I/O burst time as the “ceiling” of the next two random numbers in the sequence given by next_exp(); multiply the I/O burst time by 8 such that I/O burst time is close to an order of magnitude longer than CPU burst time; as noted above, for CPU-bound processes, multiply the CPU burst time by 4 and divide the I/O burst time by 8 (i.e., do not bother multiplying the original I/O burst time by 8 in this case); for the last CPU burst, do not generate an I/O burst time (since each process ends with a final CPU burst)

Simulation specifics  (Part II)

Your simulator keeps track of elapsed time t (measured in milliseconds), which is initially zero for each scheduling algorithm.  As your simulation proceeds, t  advances to each “interesting” event that occurs, displaying a specific line of output that describes each event.

The “interesting” events are:

•  Start of simulation for a specific algorithm

•  Process arrival (i.e., initially and at each I/O completion)

•  Process starts using the CPU

•  Process finishes using the CPU (i.e., completes a CPU burst)

•  Process has its τ value recalculated (i.e., after a CPU burst completion)

•  Process preemption (SRT and RR only)

•  Process starts an I/O burst

•  Process finishes an I/O burst

•  Process terminates by finishing its last CPU burst

• End of simulation for a specific algorithm

Note that the “process arrival” event occurs each time a process arrives, which includes both the initial arrival time and when a process completes an I/O burst. In other words, processes “arrive” within the subsystem that consists only of the CPU and the ready queue.

The “process preemption” event occurs each time a process is preempted.  When a preemption occurs, a context switch occurs, except when the ready queue is empty for the RR algorithm.

After you simulate each scheduling algorithm, you must reset your simulation back to the initial set of processes and set your elapsed time back to zero.

Note that there may be times during your simulation in which the simulated CPU is idle because no processes have arrived yet or all processes are busy performing I/O. Also, your simulation ends when all processes terminate.

If diferent types of events occur at the same time, simulate these events in the following order:

(a) CPU burst completion; (b) process starts using the CPU; (c) I/O burst completions; and

(d) new process arrivals.

Further, any “ties” that occur within  one of these categories are to be broken using process ID order.  As an example, if processes G1  and S9 happen to both complete I/O bursts at the same time, process G1 wins this “tie” (because G1 is lexicographically before S9) and is therefore added to the ready queue before process S9.

Be sure you do not implement any additional logic for the I/O subsystem.  In other words, there are no specific I/O queues to implement.

Measurements  (from Part I)

There are a number of measurements you will want to track in your simulation. For each algorithm, you will count the number of preemptions and the number of context switches that occur. Further, you will measure CPU utilization by tracking CPU usage and CPU idle time.

Specifically, for each  CPU  burst, you will track CPU burst time (given), turnaround time, and wait time.

CPU burst time

CPU burst times are randomly generated for each process that you simulate via the above algorithm. CPU burst time is defined as the amount of time a process is actually using the CPU. Therefore, this measure does not include context switch times.

Turnaround time

Turnaround times are to be measured for each process that you simulate.  Turnaround time is defined as the end-to-end time a process spends in executing a single  CPU  burst.

More specifically, this is measured from process arrival time through to when the CPU burst is completed and the process is switched out of the CPU. Therefore, this measure includes the second half of the initial context switch in and the first half of the final context switch out, as well as any other context switches that occur while the CPU burst is being completed (i.e., due to preemptions).

Wait time

Wait times are to be measured for each CPU burst. Wait time is defined as the amount of time a process spends waiting to use the CPU, which equates to the amount of time the given process is actually in the ready queue. Therefore, this measure does not include context switch times that the given process experiences, i.e., only measure the time the given process is actually in the ready queue.

CPU utilization

Calculate CPU utilization by tracking how much time the CPU is actively running CPU bursts versus total elapsed simulation time.

 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP501 ICT Fundamentals
  • 下一篇:BISM1201代做、代寫Python/Java程序語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲欧洲日本一区二区三区| 精品国产一级| 日本在线高清| 五月天久久久| 精品视频一二| 日本成人在线视频网站| 裤袜国产欧美精品一区| 51精产品一区一区三区| 亚洲成av人片在线观看www| 久久久久97| 欧美一级免费| 97精品一区| 99国产精品久久久久久久成人热| 亚洲开心激情| 亚洲精品国产精品粉嫩| 日本美女一区二区| 国产伊人久久| 日韩pacopacomama| 美国毛片一区二区三区| 狠狠爱综合网| 国产一区美女| 欧美日韩麻豆| 亚洲日本va| 精品三级国产| 亚洲精品合集| 国产精品亚洲综合在线观看| 亚洲国产精品一区| 一区二区三区四区五区在线| 免费高潮视频95在线观看网站| 日韩影院免费视频| 国产毛片一区| 好看的日韩av电影| 亚洲欧美偷拍自拍| 欧美.www| 欧美~级网站不卡| 亚洲天堂黄色| 激情欧美一区| 欧美日韩在线二区| 久久国产精品亚洲人一区二区三区 | 高清不卡亚洲| 毛片在线网站| 另类图片综合电影| 中文字幕在线看片| 激情aⅴ欧美一区二区欲海潮| 男人的天堂久久精品| 在线亚洲成人| 亚洲一区自拍| 男男视频亚洲欧美| 国产精品久久久久久| 欧美r级电影| 91视频久久| 四虎8848精品成人免费网站| 国产精品久久观看| 亚洲深夜视频| 日本一区二区三区视频在线| 蜜桃麻豆影像在线观看| 69堂免费精品视频在线播放| 美女网站视频一区| 99精品欧美| 欧美96一区二区免费视频| 麻豆国产91在线播放| 欧美激情自拍| 精品国产亚洲一区二区三区在线 | 欧美激情99| 亚洲h色精品| 亚洲精品一二三区区别| 久久aⅴ国产紧身牛仔裤| 蜜桃久久久久久久| 日韩在线免费| 麻豆精品新av中文字幕| 伊人久久大香| 日本精品一区二区三区在线观看视频| 欧美色一级片| 亚欧美无遮挡hd高清在线视频| 亚洲在线网站| 日韩伦理在线一区| 久久一区二区三区四区五区| 国内一区二区三区| 经典三级久久| 国内成人在线| 日本黄色精品| 日本在线一区二区| 国产一区二区三区站长工具| 亚洲福利合集| 最新精品国产| 蜜桃视频www网站在线观看| 亚洲视频二区| 国产亚洲一卡2卡3卡4卡新区| 亚洲天堂中文字幕在线观看| 欧美阿v一级看视频| 91中文字幕精品永久在线| 香蕉久久一区| 亚洲传媒在线| 久久亚洲在线| а√天堂中文在线资源8| 国产日韩欧美一区| 精品国产三级| 亚洲少妇诱惑| 欧美黄页在线免费观看| 亚洲精品亚洲人成在线| 久久精品国产清高在天天线| 免费欧美在线| 麻豆一区二区三| baoyu135国产精品免费| 国产亚洲福利| 美腿丝袜亚洲三区| 亚洲无线观看| 蜜桃视频第一区免费观看| 麻豆精品在线视频| 精品素人av| 国产盗摄——sm在线视频| 欧美日韩综合| 日韩精品水蜜桃| av免费不卡国产观看| 国语精品一区| 136国产福利精品导航网址| 日韩系列欧美系列| 欧美精品momsxxx| 亚洲一区二区三区高清| 国产日韩一区| 色吊丝一区二区| 日韩久久精品| 日韩影片在线观看| 视频一区二区国产| 久久男人av| 国产精品88久久久久久| 国产精品久久久久久久久免费高清 | 国产精品tv| 日韩理论片av| 中文字幕视频精品一区二区三区| 裸体一区二区| 国语精品视频| 水蜜桃久久夜色精品一区的特点| 日本美女一区二区三区视频| 欧美先锋资源| 免费一级欧美片在线播放| 欧美sss在线视频| 日韩精品免费观看视频 | 伊人精品视频| 在线观看亚洲| 影音先锋国产精品| 国产精品mm| av不卡免费看| 国内精品久久久久久久影视简单| 国产精品毛片在线看| 国产一区二区三区亚洲综合| 亚洲激情亚洲| 国产精品一级在线观看| 久久xxxx精品视频| 日韩三级毛片| 日韩免费高清| 91精品推荐| 在线观看视频免费一区二区三区| 欧美午夜a级限制福利片| 久久久亚洲欧洲日产| 亚洲视频www| 日韩极品在线| 国产成人精品一区二三区在线观看| 欧美三级乱码| 久久精品国产网站| 尤物在线精品| 偷窥自拍亚洲色图精选| 亚洲国产福利| 天堂综合网久久| 国内揄拍国内精品久久| 免费看黄色91| 精品一区电影| 青青草精品视频| 免费的国产精品| 日本电影一区二区 | 日韩电影在线看| 51一区二区三区| 欧美婷婷在线| 日韩av在线发布| 日韩国产91| 免费视频久久| 欧美激情网址| 亚洲网色网站| 手机在线观看av| 久久一区二区中文字幕| 国产麻豆精品| 成人国产精品| 噜噜噜躁狠狠躁狠狠精品视频 | 亚洲高清在线| 日韩影院在线观看| 日韩精品免费一区二区在线观看| 欧美日韩ab| 日本h片久久| 可以看av的网站久久看| 精品中国亚洲| 国产一区二区三区91| 日本综合久久| 美国三级日本三级久久99| 久久国产一二区| 日韩电影在线免费| 亚洲国产黄色| 成人在线观看免费视频| 日本在线电影一区二区三区| 欧美/亚洲一区| 动漫av一区|