加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP4337代做、代寫Python設計編程

時間:2024-06-20  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



The University of New South Wales
COMP4337/9337 Securing Fixed and Wireless Networks
Assignment specifications for T2 2024 (24T2)
Version 1.0
1. Change Log
v1.0: Released on 17th June 2024
o Draft specifications
2. Due dates:
Final report/code/demo video submission: 1700 Hrs Friday 2nd August 2024
3. Goal and learning objectives
For this assignment, your task is to implement a hybrid digital contact tracing protocol called “DIMY: Did
I Meet You”. You should implement various components of the protocol by following the specifications
listed in this document, and reading the reference document listed under the section references to
understand the scope and working of the DIMY protocol. You can use multiple processes/threads/virtual
machines running on one laptop/desktop (with Linux OS) to setup the implementation environment.
3.1 Learning Objectives
On completing this assignment, you will gain sufficient expertise in the following skills:
1. Understanding and implementing several security mechanism for privacy-preserving, secret
sharing, key exchange and confidentiality such as Diffie-Hellman key exchange, Shamir Secret
Sharing, Hashing and Bloom Filters. ?
2. Learning how UDP/TCP socket-based communications take place.
3. Integration of various technologies to achieve Confidentiality, Integrity and Privacy.
4. Experience in implementing a real protocol.
4. Assignment Specifications
Updates to the assignment, including any corrections and clarifications, will be posted on the
course website at WebCMS. Please make sure that you check the course website regularly for
updates.

This section gives detailed specifications of the assignment.
4.1 COVID-19 and Contact Tracing
The outbreak of the COVID-19 pandemic has changed many aspects of everyone’s way of life. One of
the characteristics of COVID-19 is its airborne transmission, which makes it highly contagious. Moreover,
a person infected with COVID-19 can be asymptomatic, thus spreading the virus without showing any
symptoms. Anyone who comes into a close contact (within 2m for at least 15 min) with an infected person
is at a high risk of contracting the coronavirus.
Digital contact tracing applications aim to establish the close contacts of an infected person so that they
may be tested/isolated to break the chain of infection. The digital contact tracing app is typically composed
of two main entities, the smartphones acting as clients and a back-end server. In this model, the
smartphones of two individuals with tracing apps installed would exchange some random identification
code (this identification code does not reveal any sensitive information about their actual identities) when
they are in close proximity. The back-end is typically maintained by health organisations (or the
government), and once a person is diagnosed with COVID-19, they can opt to share the local list of
contacts stored on their smartphone with the back-end server to identify at-risk users. Digital contact
tracing apps are not meant to replace the traditional manual contact tracing processes, rather, these have
been designed to supplement the contact tracing process.
4.2 DIMY Digital Contact Tracing Protocol.
Download the reference paper [1] and read through it to understand various components of the DIMY
protocol. Briefly, devices participating in DIMY periodically generate random ephemeral identifiers.
These identifiers are used in the Diffie-Hellman key exchange to establish a secret key representing the
encounter between two devices that come in contact with each other. After generating their ephemeral
identifiers, devices employ the “k-out-of-n” secret sharing scheme to produce n secret shares of the
ephemeral identifiers. Devices now broadcast these secret shares, at the rate of one share per minute,
through advertisement messages. A device can reconstruct the ephemeral identifiers advertised from
another device, if it has stayed in this device’s communication range for at least k minutes.
After the ephemeral identifier is re-constructed, DIMY adopts Bloom filters to store the relevant contact
information. Each device maintains a Daily Bloom Filter (DBF) and inserts all the constructed encounter
identifiers in the DBF created for that day. The encounter identifier is deleted as soon as it has been
inserted in the Bloom filter. Devices maintain DBF on a 21 days rotation basis, identified as the incubation
period for COVID-19. DBFs older than 21 days automatically get deleted.
For the back-end, DIMY utilises blockchain to satisfy the immutable and decentralised storage
requirement. Once a user is diagnosed with COVID-19, they can volunteer to upload their encounter
information to the blockchain. Health Authorities (HA) then generate an authorisation access token from
the blockchain that is passed on to the device owner. The user’s device combines 21 DBFs into one Contact
Bloom Filter (CBF) and uploads this filter to the blockchain. The blockchain stores the uploaded CBF as
a transaction inside a block (in-chain storage) and appends the block to the chain.

Daily, the app will query the blockchain to perform risk-analysis, checking whether the user has come in
close contact with any person diagnosed positive. A device combines all of the locally stored DBFs (the
maximum number is limited to 21) in a single Bloom filter called the Query Bloom Filter (QBF). The
QBF is part of the query that gets uploaded to the blockchain. The blockchain matches the QBF with CBF
stored as a transaction in the blockchain and returns “matched” or “not matched” as a response. If the
response from the blockchain is negative, the device deletes its QBF. Conversely, if the user is found to
be at-risk, the user is notified, and the QBF is stored separately for further verification by HA in the follow
up manual contact tracing process.
4.3 Implementation Details
In this assignment, you will implement the DIMY protocol with a few modified parameters.
Note that in this specification, the term ‘node’ refers to an instance of the DIMY protocol implementation
(client) running on your laptop/desktop. Your main front-end program should be named Dimy.py. Note
that you also need to implement the backend centralised server that should run on your laptop/desktop.
Your backend server code should be named DimyServer.py.

This assignment specification has been modified to use TCP/IP protocol stack-based message passing
instead of BLE communication. It also uses different parameters as compared with the original
specifications listed in reference paper [1]. This is to cut down the development, testing and demo time
for the assignment. The marking guidelines appear at the end of the assignment specifications and are
provided to indicate the distribution of the marks for each component of the assignment.

Assignment Specification
We will follow most of the original specifications from the reference paper [1] except the changes that are
listed in this section. There are three major differences: 1) We will employ UDP/TCP socket-based
message passing between the nodes instead of using BLE communication. 2) We use different parameters
values described in detail later in this section. 3) You are required to implement a simple centralised server
acting as the back-end server instead of the Blockchain proposed in the reference paper. For details, please
go through the subsection on the backend server.
In DIMY protocol, each node performs the following steps to broadcast and register a shared secret key
representing an encounter with other another node in close proximity. We have listed these in form of
tasks you will be assessed on.
Task 1: Generate a **-Byte Ephemeral ID (EphID) after every 15 sec. Note that the reference paper
proposed a 16-Byte EphID due to limitation on the size of a Bluetooth message broadcast.
Task 2: Prepare n chunks of the EphID by using k-out-of-n Shamir Secret Sharing mechanism. For this
implementation, we use the values of k and n to be 3 and 5 respectively.

Task 3: Broadcast these n shares @ 1 unique share per 3 seconds. For this implementation, you are not
required to use Bluetooth message advertisement, rather you can use simple UDP broadcasting to advertise
these shares. Also, you do not need to implement the simultaneous advertisement of EphIDs proposed in
the reference paper [1].
Task 3a: Implement a message drop mechanism that drops a message which is ready to be transmitted
with probability 0.5. This should be implemented at the sender. Hint: generate a random number between
0 and 1. If this number is less than 0.5, don’t transmit that message (chunk).
Task 4: A receiver can reconstruct the advertised EphID, after it has successfully received at least k shares
out of the n shares being advertised. This means that if the nodes have remained in contact for at least 9
seconds and received >= 3 shares of the same EphID, it can reconstruct the EphID. Verify the re-
constructed EphID by taking hash and comparing with the hash advertised in the chunks.
Task 5: The node proceeds with applying Diffie-Hellman key exchange mechanism to arrive at the secret
Encounter ID (EncID).
Task 6: A node, after successfully constructing the EncID, will encode EncID into a Bloom filter called
Daily Bloom Filter (DBF), and delete the EncID.
Task 7: A DBF will store all EncIDs representing encounters faced during a **-second period. A new
DBF is initiated after the **-second period and each node stores at most 6 DBFs. DBF that is older than
9 min from the current time is deleted from the node’s storage. Note that in original specifications DBF
stores a day worth of EncIDs, but for this demo we will use DBF to store EncIDs received in **-second
windows.
Task 8: Every 9 minutes, a node combines all the available DBFs into another Bloom Filter called Query
Bloom Filter (QBF).
Task 9: Each node sends this QBF to the backend server, to check whether it has come in close contact
with someone who has been diagnosed positive with COVID-19. The node will receive the result of
matching performed at the back-end server. The result is displayed to inform the user. You are required
to use TCP for this communication between the node and the back-end server.
Task 10: A user who is diagnosed positive with COVID-19, can choose to upload their close contacts to
the backend server. It combines all available DBF’s into a single Contact Bloom Filter (CBF) and uploads
the CBF to the backend server. Once a node uploads a CBF, it stops generating the QBFs. The node will
receive a confirmation that the upload has been successful.
Task 11: This task performs simple security analysis of your implementation of the DIMY protocol.

A) List all the security mechanism proposed in the DIMY protocol and explain what purpose each of the
mechanism serves.
B) There are two types of communications in the DIMY protocol: i) Nodes communicate with each other
using UDP broadcasts. ii) Nodes communicate with the backend server using the TCP protocol. Create an
attacker node by modifying your implementation of the DIMY frontend. This code is named Attacker.py.
Assume that this node can receive all of the UDP broadcasts from other legitimate nodes. Think of one
attack that can be launched by this attacker node. Implement this attack and show how this attack affects
the DIMY nodes.
C) Now focus on the communication of nodes with the backend server. Again, think of one attack that can
be launched by the attacker node assuming the communication is not encrypted and the attacker node can
listen to any node communicating with the backend server. Explain how this attack affects the working of
the DIMY protocol. Note that you do not need to implement this 2nd type of attack on communication with
the backend server.
D) Finally, suggest measures (if possible) that can be implemented to prevent the attacks you identified in
B and C above for both types of communications.
General:
o Your front-end implementation should work in the debugging mode displaying messages sent and
received, operations performed and state of Bloom filters in the terminal to illustrate that it is
working correctly.
o Use UDP message broadcasting to implement send and receive functionality.
o DBF, QBF and CBF are all of size 100KB and use 3 hashes for encoding.
o You are required to run the assignment with three nodes running the DIMY frontend (plus the
attacker node in Task 11) and one back-end server.
Back-end Server
Your client implementation interacts with a backend-server to send CBF/QBF and receive the results for
the risk analysis performed at the back-end. Note that, you are not required to use a blockchain-based
implementation, rather, you can use a simple centralised server to interact with the front-end.
 The backend server program is deployed in your laptop or desktop machine using TCP port No
55000.
 You can provide the information regarding IP address and port No of the backend server to your
front-end client program through command line arguments. For example, Dimy.py
192.168.1.100 55000, where server is running on IP 192.168.1.100 and port No 55000 or you

can opt to hard code this information at the front-end.
 The nodes establish a new TCP connection with the back-end server to transfer CBF/QBF to the
server and receive the results of the queries.
 The back-end server stores all the received CBFs and can perform matching for each QBF
received from devices. It informs the node that has uploaded the QBF about the result of
matching, matched or not matched. If there is no CBF available, the back-end returns not
matched.
5. Additional Notes
 Groups: You are expected to work in groups composed of maximum two students. Use the same
groups that you have formed for the labs.

 Use Python to implement this assignment.

 You are required to develop and test the implementation on your own laptop/desktop instead of using
the CSE login servers.

 You are free to design your own format for messages exchanged between the nodes and the back-end
server. Just make sure your front-end and back-end programs can handle these messages appropriately.

 You are encouraged to use the course discussion forum on Ed to ask questions and to discuss different
approaches to solve any issues faced during the implementation. However, you should not post any
code fragments on the forum.
6. Assignment Submission
You need to submit a report, your source code and a demo video. Only one member of the Group is
required to do the submission. Put the details of the group members in each document.
The report (AssignmentReport.pdf see details in Section 7) should include the group ID, members name
and zIDs, and an assignment diary that details weekly tasks performed by each group members. Add a
note about how to run your program detailing the steps required to compile/run your submitted code.
Moreover, describe your method used for implementing the specified tasks, and issues faced along with
their adopted solutions. For task 11, explain how the attacker node can launch your selected attacks on the
DIMY protocol.
You will demonstrate your assignment with a video. The video should be a screen recording showing
running of each step of the assignment. We recommend you run each process in a separate terminal, so

that you can capture the interaction between different terminals on the same screen. You must include
each of the following segments against Tasks 1 – 11. You can store the video on a file sharing site (keep
video private and unlisted) and share the link in the report.
You are also required to submit your source code (e.g., submit Dimy.py, DimyServer.py and Attacker.py)
used in the demonstration. The demonstration video carries 15 marks, while the report and code will be
marked out of 5, for a total of 20 marks.
For code submission, please ensure that you use the mandated file name. Your main program should be
named Dimy.py. You may of course have additional helper files.
Note that in the following table “show” means a screen recording of the terminal windows.
Task Segment Description Marks
Task 1 Segment 1 Show the generation of the EphID at the client nodes. 0.5
Task 2

Segment 2 Show that 5 shares of the EphIDs are generated at each node. 0.5
Task 3/3a Segment 3-A Show the sending of the shares @ 1 share per 3 seconds over UDP while
incorporating the drop mechanism.
0.5
Segment 3-B Show the receiving of shares broadcast by the other nodes. 0.5
Segment 3-C Show that you are keeping track of number of shares received for each
EphID. Discard if you receive less than k shares.
0.5
Task 4 Segment 4-A Show the nodes attempting re-construction of EphID when these have
received at least 3 shares.
0.5
Segment 4-B Show the nodes verifying the re-constructed EphID by taking the hash
of re-constructed EphID and comparing with the hash value received in
the advertisement.
0.5
Task 5 Segment 5-A Show the nodes computing the shared secret EncID by using Diffie-
Hellman key exchange mechanism.
0.5
Segment 5-B Show that a pair of nodes have arrived at the same EncID value. 0.5
Task 6 Segment 6 Show that the nodes are encoding EncID into the DBF and deleting the
EncID.
0.5
Task 7 Segment 7-A Show that the nodes are encoding multiple EncIDs into the same DBF
and show the state of the DBF after each addition.
0.5
Segment 7-B Show that a new DBF gets created for the nodes after every ** seconds.
A node can only store maximum of 6 DBFs.
0.5
Task 8 Segment 8 Show that after every 9 minutes, the nodes combine all the available
DBFs into a single QBF.
0.5
Task 9 Segment 9 Show that a node can combine the available DBF into a CBF and upload
the CBF to the back-end server.
0.5
Task 10 Segment 10-
A
Show that the nodes send the QBF to the back-end server. 0.5
Segment 10-
B
Show that the nodes are able to receive the result of risk analysis back
from the back-end server. Show the result for a successful as well as an
unsuccessful match.
0.5

Segment 10-
C
Show the terminal for the back-end server performing the QBF-CBF
matching operation for risk analysis.
1
Task 11 Segment 1**
A
Explain the purpose of each of the security mechanism employed in the
DIMY protocol.
2
Segment 1**
B
Show the attacker node launching your selected attack on the inter-
node communication in the implementation setup.
2
Segment 1**
C
Explain how the attacker node can possibly launch your selected attack
on the communication between nodes and the backend server.
1
Segment 1**
D
Discuss the countermeasures that can be taken to mitigate the effects
of the attacks described in Segments 1**A and 1**B.
1

Important notes
? Assignment to be submitted by give.?
? Late submission penalty will be applied as follows:
o 5% reduction in obtained marks per day after the deadline ??
o 6 or more days after deadline: NOT accepted ?
NOTE: The above penalty is applied to your obtained marks. For example, if you submit your final
assignment deliverables 1 day late and your score in the assignment is 15/20, then your final mark will be
15 – 0.75 (5% penalty) = 14.25.
7. Report
For the final deliverable, you have to submit a small report, AssignmentReport.pdf (no more than 4
pages) that must contain the following:
1. Assignment name, group ID and names/IDs for all group members.
2. A note on how to run your program detailing the steps required to compile /run your submitted code.
3. Executive summary that provides a brief introduction to the salient features in the assignment
implementation.
4. A brief discussion of how you have implemented the DIMY protocol. Provide a list of features that
you have successfully implemented. In case you have not been able to get certain features of DIMY
working, you should also mention that in your report.
5. Discuss any design trade-offs considered and made. List what you consider is special about your
implementation. Describe possible improvements and extensions to your program and indicate how
you could realise them.
6. Indicate any segments of code that you have borrowed from the Web or other books.
7. Assignment Diary: Each group is also required to attach a **page assignment diary to the report. This
diary should maintain a weekly log of activities conducted by each group and should explicitly indicate
the part played by each team member in these activities. You may use any format (Gantt chart, table,

etc.) for maintaining the diary. The diary is not marked. However, if the diary is not submitted, a
penalty of 2 marks will be applied. Please attach the diary at the end of the report. Do not submit it as
a separate file. Unless specified otherwise, contribution from all members will be considered equal.
Any difficulty in working with team members must be reported to the tutor-in-charge at the earliest.
8. Plagiarism
You are to write all of the code for this assignment implementation yourself. All source codes are subject
to strict checks for plagiarism, via highly sophisticated plagiarism detection software for code as well as
the submitted report. These checks may include comparison with available code from Internet sites and
assignments from previous semesters. In addition, each submission will be checked against all other
submissions of the current semester. Do not post this assignment on forums where you can pay
programmers to write code for you. We will be monitoring such forums. Please note that we take this
matter quite seriously. The LIC will decide on appropriate penalty for detected cases of plagiarism. The
most likely penalty would be to reduce the assignment mark to ZERO and reported to the school
plagiarism register.
Forum use.
We are aware that a lot of learning takes place in student conversations, and don’t wish to discourage
those. You are free to discuss (and are in fact strongly encouraged to do so) generic issues relevant to the
assignment on the course forum. However, refrain from posting specific code-fragments or scripts on the
forum. Students will be heavily penalized for doing so. It is important, for both those helping others and
those being helped, not to provide/accept any programming language code in writing, as this is apt to be
used exactly as is, and lead to plagiarism penalties for both the supplier and the copier of the codes. It is
OK to borrow bits and pieces of code (not complete modules/functions) from sample code out on the Web
and in books. You MUST however acknowledge the source of any borrowed code. This means providing
a reference to a book or a URL where the code appears (as comments). Also indicate in your report the
portions of your code that were borrowed. Explain any modifications you have made (if any) to the
borrowed code. 
References:
[1] DIMY: Enabling Privacy-preserving Digital Contact Tracing,
https://www.sciencedirect.com/science/article/pii/S108480452200025X
FAQs:
Implementation:

1. Can we use available cryptographic libraries and modules? Yes, you can use any library to help
you with cryptographic primitives and you don’t need to implement algorithms from scratch.
2. Do we need to use libraries for Bloom filter implementation? No, you can design Bloom Filter by
setting bits with bitwise operations in a byte array to 1 or 0 to represent an element.

Report and Video:

1. Do we need to include code or terminal window screenshots in the report? No, the video will be
sufficient. Submit your code separately.
2. Can we shorten timer (Task 8) for the video presentation? No, but you can fast forward the
recording.
3. Is there a time limit for the video? No, but show only terminal windows with the process and no
code.
4. Can we reduce amount of the information printed to the terminal? Yes, ensure your terminal
windows display the necessary information in a readable and neat manner. Some ideas to consider:
a. Segment 4-A: EpID reconstruction DONE. EphID: 033f69 " (print only the first 6 char of
the EphID)
b. Segment 7-B: A new DBF has been created from 3 encounters.
c. Segment 10-A: Sending the QBF to the back-end server...

Submission:
1. Are both team members required to submit the assignment? No, only one student from your team
can submit, but remember to include zIDs of both members in your report.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp












 

掃一掃在手機打開當前頁
  • 上一篇:代做DE114102D、代寫c/c++,Python程序語言
  • 下一篇:COMP9727代做、代寫Java/Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品久久久久中文字幕小说| 日本不卡高清视频| 伊人久久大香线蕉av不卡| 欧美日韩一卡| 欧亚一区二区| 99日韩精品| 成人在线免费观看视频| 成人亚洲精品| 久久福利在线| 国产高潮在线| 999在线观看精品免费不卡网站| 久久国产精品免费一区二区三区| 免费一区视频| 日韩成人高清| 日韩影院在线观看| 黄色综合网站| 91精品国产91久久久久久黑人| 亚洲精品白浆高清| 国产精品s色| 国产精品99久久久久久董美香 | 欧洲大片精品免费永久看nba| 日韩在线免费| 欧美mv日韩| 裸体素人女欧美日韩| 天天射成人网| 欧美丝袜一区| 精品视频网站| www.亚洲一二| 激情不卡一区二区三区视频在线| 亚洲欧美专区| 欧美日韩在线大尺度| 欧美亚洲三区| 国产精品尤物| 欧美成人家庭影院| 欧美一级在线| 欧美综合影院| 成人午夜精品| 黄色精品视频| 青草综合视频| 国产激情欧美| 久久国产麻豆精品| 国产精品一级| 日本中文一区二区三区| 麻豆成人在线观看| 日韩国产在线一| 亚洲精品免费观看| 在线观看一区| 国产精品成人3p一区二区三区| 国产精品啊啊啊| 综合久久婷婷| 国产精品最新| 日本三级久久| 91综合久久爱com| 欧美韩一区二区| 91精品国偷自产在线电影| 神马日本精品| 国产一在线精品一区在线观看| 欧美成人精品| 国产亚洲精品久久久久婷婷瑜伽| 亚洲欧洲日本一区二区三区| 亚洲欧美日本视频在线观看| 人禽交欧美网站| 中国色在线日|韩| 欧美日韩卡一| 欧美日韩在线大尺度| 亚洲国产精品嫩草影院久久av| 亚洲a级精品| 精品午夜久久| 亚洲精品国产偷自在线观看| 美女爽到呻吟久久久久| 色777狠狠狠综合伊人| 影音成人av| 欧美啪啪一区| 日韩黄色av| 欧美日中文字幕| 先锋影音久久久| 高清av不卡| 亚洲精品韩国| 啪啪亚洲精品| 久久影院一区| 日韩专区欧美专区| 日韩中文影院| 综合久久精品| 精品一区不卡| 亚洲专区免费| 久久亚洲精品人成综合网| 在线观看亚洲| 99久久香蕉| 一本色道久久综合亚洲精品高清| 在线天堂新版最新版在线8| 一区二区三区导航| 亚洲欧美成人vr| 国产91精品对白在线播放| 美女久久网站| 99精品欧美| 亚洲五码在线| 免费日韩视频| 日韩精品电影一区亚洲| 日韩电影在线一区二区| 欧州一区二区| 自拍偷自拍亚洲精品被多人伦好爽| 亚洲乱码视频| 亚洲91视频| 中文字幕成在线观看| 中文字幕亚洲精品乱码| 精品国产一区二区三区不卡蜜臂 | 国产精品va视频| 久久久www| 国产777精品精品热热热一区二区| 欧美影视一区| 精品免费av| yellow在线观看网址| 亚洲区综合中文字幕日日| 加勒比色综合久久久久久久久| 久久亚洲风情| 亚洲综合激情在线| 亚洲图片在线| 国产黄色一区| 欧美精品国产白浆久久久久| 日本大胆欧美人术艺术动态| 日本sm残虐另类| 久久视频国产| 精品三级在线| 久久久久国内| 91亚洲视频| 国产毛片久久久| 欲香欲色天天天综合和网| 韩国一区二区三区视频| 九色精品91| 裸体一区二区三区| 欧美1区3d| 美女久久久精品| 激情久久久久久| 羞羞视频在线观看欧美| 久久精品青草| 成人午夜一级| 久久久久国产| 日日噜噜夜夜狠狠视频欧美人| 精品无人区麻豆乱码久久久| 日韩在线观看| 成人av资源网址| 欧美色网一区| 精品无人区一区二区| 91九色综合| 欧美日韩一二三四| 青草国产精品久久久久久| 波多野结衣一区| 欧美精品播放| 美女尤物久久精品| 日韩美女毛片| se01亚洲视频| 精品久久ai电影| 99精品国产在热久久下载| 黑人操亚洲人| 成人在线视频区| 蜜桃免费网站一区二区三区| 久久精品免视看国产成人| 中文av在线全新| 国产精品极品| 六月丁香综合在线视频| 在线综合视频| 天堂va在线高清一区| 成人免费网站www网站高清| 91精品国产自产在线观看永久∴| 国产精品亚洲产品| 亚洲欧洲午夜| 日韩视频一区二区三区四区| 视频在线日韩| 亚洲精品99| 亚洲丝袜美腿一区| 51一区二区三区| 欧美午夜不卡| 日韩中文av| 国产精品久久乐| 亚洲一区免费| 激情小说一区| 亚洲毛片一区| 色在线免费观看| 午夜片欧美伦| 日本在线成人| 日本成人在线电影网| 日本一区二区三区视频| 精品人人人人| 国产中文精品久高清在线不| 日日av拍夜夜添久久免费| 91九色精品国产一区二区| 日韩av黄色在线| 久久精品女人| 在线看片福利| 91精品91| 精品视频97| 国产剧情在线观看一区| 欧美一级二级视频| 久久亚洲国产精品一区二区| 欧美调教网站| 日韩av一区二区在线影视| 美女视频黄久久| 黑人巨大精品欧美一区二区桃花岛| 亚洲调教视频在线观看| 亚洲2区在线|