加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

掃一掃在手機打開當前頁
  • 上一篇:中國人在越南遣返回國原因有哪些(越南被遣返怎么處理)
  • 下一篇:長沙旅行社代辦越南簽證多少錢(怎么選擇好的旅行社)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    国产精品女主播一区二区三区| 日韩欧美另类中文字幕| 91综合视频| 精品一区在线| japanese色系久久精品| 亚洲国产美女| 色综合天天色| 视频一区视频二区中文| 久久国产直播| 日韩精品成人在线观看| 中文字幕亚洲综合久久五月天色无吗''| av中文在线资源库| 中文亚洲免费| 免费久久久久久久久| 国产精品sss在线观看av| 国产免费播放一区二区| 久久字幕精品一区| 亚洲国产伊人| 新版的欧美在线视频| 巨乳诱惑日韩免费av| 一级毛片免费高清中文字幕久久网 | 欧美日韩精品一本二本三本| 欧洲精品一区| 一区二区三区四区精品视频| 国产一区二区三区四区五区传媒| 麻豆精品久久久| 精品九九久久| 日韩免费在线电影| 亚洲一级少妇| 深夜成人在线| av综合电影网站| 91综合视频| 韩日毛片在线观看| 国产精品论坛| 国内激情视频在线观看| 日本久久精品| 国产传媒在线观看| 欧美激情电影| 久久青青视频| 欧美大胆a人体大胆做受| 欧美gay男男猛男无套| 男女男精品视频| 免费视频久久| 蜜臀91精品一区二区三区| 欧美bbbbb| 极品美女一区| 亚洲成av在线| 91另类视频| 欧美在线黄色| 麻豆成人久久精品二区三区红| 亚洲国产高清一区| 久久亚洲精品人成综合网| 成人看片网站| 久久精品二区亚洲w码| 国产日产高清欧美一区二区三区| 美女视频第一区二区三区免费观看网站 | 成人亚洲综合| 久久精品国产第一区二区三区| 亚洲高清资源| 日本va欧美va欧美va精品| 麻豆精品新av中文字幕| 国内精品美女在线观看| 99精品女人在线观看免费视频| 中文字幕一区二区av| 欧美中文高清| aaa国产精品视频| 久久综合成人| av不卡免费看| 欧美1级2级| 美女视频第一区二区三区免费观看网站| 日韩国产精品大片| 久久99国产成人小视频| eeuss鲁片一区二区三区| 999精品在线| 午夜亚洲影视| 婷婷午夜社区一区| 日本不卡的三区四区五区| 天海翼亚洲一区二区三区| 国产成人tv| 99成人在线| 伊人久久av| 青青草伊人久久| 久久99成人| 欧美伦理在线视频| 91综合在线| 久久一区激情| 日韩在线网址| 午夜欧美精品久久久久久久| h片在线观看视频免费免费| 一道本一区二区| 日韩极品在线观看| 欧美成人精品| 高清不卡亚洲| 欧美精品国产一区| 第九色区aⅴ天堂久久香| 伊人影院久久| 亚洲十八**毛片| 国产精品视频一区二区三区四蜜臂| 丁香五月缴情综合网| 午夜亚洲视频| 欧美亚洲一级| 成人免费在线电影网| 鲁大师成人一区二区三区| 日韩专区视频| 日韩精品成人在线观看| 黄色亚洲免费| 国产一区高清| 日韩不卡一区二区三区| 亚洲黄页一区| 美女网站一区二区| 红杏aⅴ成人免费视频| 免费精品视频| 影音先锋日韩资源| 九色丨蝌蚪丨成人| 国产资源在线观看入口av| 999精品视频在线观看| 91精品国偷自产在线电影| 成人片免费看| 精品国产亚洲一区二区在线观看| 好看的av在线不卡观看| 美女视频一区二区| 国产91精品入| 欧美xxxx做受欧美护士| 日韩av影院| 日韩中文字幕区一区有砖一区| 亚洲精品美女91| 波多野结衣在线播放一区| 日韩三级一区| 久久久久久久久久久9不雅视频| 一区二区三区四区日本视频| 国产精品手机在线播放| 国产视频一区三区| 91精品国产色综合久久不卡粉嫩| 天天躁日日躁成人字幕aⅴ| 欧美美女福利视频| 精品高清久久| 成人亚洲网站| 久久一区二区三区喷水| 精品久久在线| 亚洲小说区图片区| 三级久久三级久久久| 激情一区二区| 欧美区日韩区| 91久久亚洲| 国产精品日韩精品在线播放| 国产精品婷婷| 国产亚洲欧美日韩在线观看一区二区 | 97视频一区| 99只有精品| 久久影院一区| 亚洲精品日本| 国产亚洲在线| 亚洲制服一区| 日韩国产一区二区三区| 精品理论电影在线| 国产精品99久久久久久董美香 | 麻豆视频一区二区| 99伊人成综合| 久久国产精品美女| 88xx成人免费观看视频库| 麻豆一区二区麻豆免费观看| 国产日韩一区| 亚洲免费婷婷| 日韩人体视频| 高清亚洲高清| 99热这里只有精品8| 日韩精品社区| 亚洲精品第一| 亚洲美女视频在线免费观看| 久久av网址| 日本国产亚洲| 激情久久久久久| 亚洲8888| 国产精品一区二区免费福利视频| 欧美/亚洲一区| 日韩成人av在线资源| 欧美伊人亚洲伊人色综合动图| 欧美理论在线播放| 婷婷亚洲精品| 国产日韩欧美在线播放不卡| 99综合在线| 国产丝袜一区| а天堂中文最新一区二区三区| 国产精品99久久精品| 久久久久久久久久久9不雅视频| 亚洲一区二区日韩| av在线不卡精品| 夜夜爽av福利精品导航| 成人台湾亚洲精品一区二区| 日本欧美一区二区在线观看| 麻豆国产在线| 夜夜嗨av一区二区三区网站四季av| 日韩va亚洲va欧美va久久| 久久国产尿小便嘘嘘| 国产精品毛片久久| 免费观看不卡av| 超碰在线亚洲| 啪啪亚洲精品| 国产精品a级| 国产精品第一|