加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
For instance, CW-0**2023141520000-Tom.zip
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




















 

掃一掃在手機打開當前頁
  • 上一篇:香港到越南簽證多久能下來(香港辦理越南簽證流程)
  • 下一篇:CSSE2010 代做、代寫 c/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    性欧美长视频| 成人综合专区| 欧美日韩视频网站| 欧美成人亚洲| 精品视频一区二区三区在线观看| 国产一区二区三区朝在线观看 | 日韩片欧美片| 999在线观看精品免费不卡网站| 日本一区影院| 亚洲最大av| 成人在线不卡| 亚洲黄色免费av| 影音国产精品| 香蕉人人精品| 成人在线视频你懂的| 国产精品久一| 日本女人一区二区三区| 亚洲精品一区三区三区在线观看| 99亚洲精品| 免费精品国产| 开心激情综合| 亚洲精品在线a| 久久综合欧美| 欧美激情综合| 一区二区久久| 久久精品国产亚洲aⅴ| 天堂中文在线播放| 日韩.com| 热久久一区二区| 亚洲一卡久久| 好吊一区二区三区| 91精品国产福利在线观看麻豆| 九九九九九九精品任你躁| 国产在线视频欧美一区| 国产精品啊v在线| 亚洲国产日韩欧美一区二区三区| 丰满少妇一区| 日韩欧美三区| 亚洲tv在线| 国产在视频一区二区三区吞精| 无遮挡爽大片在线观看视频| 日韩av久操| 色综合五月天| a级片在线免费观看| 国产777精品精品热热热一区二区| 日韩午夜av在线| av成人国产| 天堂va蜜桃一区二区三区漫画版| 夜夜嗨一区二区| 国产一级一区二区| 日韩中文欧美在线| 欧美hentaied在线观看| av在线中出| 天天综合网站| 四虎精品在线观看| 日韩国产在线观看| 日本免费新一区视频| 欧美激情亚洲| 国产亚洲精aa在线看| 日韩美脚连裤袜丝袜在线| 婷婷综合一区| 秋霞午夜一区二区三区视频| 99精品在免费线中文字幕网站一区| 超碰97久久| 欧美综合另类| 亚洲综合国产激情另类一区| 性一交一乱一区二区洋洋av| 色婷婷一区二区三区| a一区二区三区| 国产日韩精品视频一区二区三区 | 国产劲爆久久| 99久久久久久中文字幕一区| jlzzjlzz亚洲女人| 日韩中文字幕1| 三上悠亚国产精品一区二区三区| 欧美xxxx网站| www.久久久久爱免| 91成人福利| 欧美日韩一二三四| 亚洲一区二区动漫| 日韩在线观看一区 | 国产精品成人自拍| 国户精品久久久久久久久久久不卡 | 国产成人高清精品免费5388| 99精品在线| 视频一区国产视频| 色999久久久精品人人澡69| 一区二区三区四区日韩| 日韩美女国产精品| 国产91一区| 国产v日韩v欧美v| 免费在线播放第一区高清av| 99视频这里有精品| 美女呻吟一区| 蜜桃视频一区二区三区在线观看 | yy6080久久伦理一区二区| www欧美在线观看| 精品国产美女| 三级影片在线观看欧美日韩一区二区| 第四色男人最爱上成人网| 日本免费在线视频不卡一不卡二| 亚洲自拍都市欧美小说| 欧美色婷婷久久99精品红桃| 男女性色大片免费观看一区二区| 国产激情欧美| 日韩有吗在线观看| 一本久道综合久久精品| 国产成人精品一区二区三区免费| 亚洲第一福利社区| 狠狠入ady亚洲精品| 四虎精品在线观看| 日韩三级不卡| 性欧美xxxx大乳国产app| 久久精品理论片| 久久的色偷偷| 亚洲在线一区| 国内一区二区三区| 久久久久在线| 牛牛精品一区二区| 日韩中出av| 另类国产ts人妖高潮视频| 日本在线不卡视频| 久久国产直播| 99久久亚洲国产日韩美女| 欧美女王vk| 麻豆久久精品| 欧美国产综合| 亚洲欧美伊人| 欧美一级一区| 99视频精品全国免费| 91国拍精品国产粉嫩亚洲一区| 亚洲春色h网| 日韩一区精品字幕| 国产欧美欧美| 久久夜色精品| 亚洲丁香日韩| 日本久久精品| 国产日韩一区二区三免费高清| 久久av在线| 欧美日韩xxxx| 视频一区二区中文字幕| 国产欧美二区| 蜜桃av一区二区三区| 最新国产精品视频| 免费成人美女在线观看.| 亚洲va久久久噜噜噜久久| 人妖欧美一区二区| 精品视频一二| 午夜欧美激情| 亲子伦视频一区二区三区| 欧美性生活一级| 国产99久久久国产精品成人免费| 国产亚洲欧美日韩精品一区二区三区| 久久久国产精品一区二区中文| 亚洲精品第一| 在线日本高清免费不卡| 美女高潮久久久| 午夜亚洲性色视频| 日韩av字幕| 免费成人在线电影| 久久久久久久久99精品大| 麻豆久久一区二区| 亚洲一区二区网站| 日韩精品成人在线观看| 日韩免费小视频| 欧美a一欧美| 欧美日韩亚洲一区在线观看| 六月丁香综合| 红杏一区二区三区| 影音先锋日韩资源| 蜜桃av一区二区三区电影| 亚洲不卡视频| 捆绑调教一区二区三区| 香蕉久久夜色精品| 极品一区美女高清| 亚洲三级观看| 不卡专区在线| 久久蜜桃av| 亚洲精品亚洲人成在线| 怡红院成人在线 | 疯狂欧洲av久久成人av电影| 91综合久久| 亚洲国产影院| 亚洲免费福利一区| 欧美午夜三级| 男女精品视频| 台湾佬综合网| 国内精品久久久久久久影视简单 | 日本aⅴ免费视频一区二区三区| 久久亚洲一区| 99热国内精品| 综合国产视频| 日韩综合一区二区| 成人精品视频| 婷婷综合网站| 第四色中文综合网| 高清久久精品| 久久精品国产色蜜蜜麻豆| 石原莉奈一区二区三区在线观看 | 亚洲天堂男人|