加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS373 COIN、代做Python設計程序

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DETECTION 
ASSIGNMENT
2024 Semester 1
1
Version 2.2Deadline: 3rd June 2024, 23:59pm
●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
given images. This is an individual assignment, so every student has to submit this assignment! This 
assignment is worth 15 marks.
●We have provided you with 6 images for testing your pipeline (you can find the images in the 
‘Images/easy’ folder).
○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
reward you with up to 10 marks.
○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
○Write a short reflective report about your extension. (Using Latex/Word)
●To output the images shown on the slides for checking, you may use the following code:
fig, axs = pyplot.subplots(1, 1)
# replace image with your image that you want to output
axs.imshow(image, cmap='gray')
pyplot.axis('off')
pyplot.tight_layout()
pyplot.show()
2SUBMISSION
Please upload your submission as a zipped file of the assignment folder to the UoA 
Assignment Dropbox by following this link: 
https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
will have our own testing environment.
●Your code for executing the main coin detection algorithm has to be located in the provided 
“CS3**_coin_detection.py” file!
●You can either put all of your code into that file, or use a modular structure with additional files 
(that, of course, have to be submitted in the zip file). However, we will only execute the 
“CS3**_coin_detection.py” file to see if your code works for the main component!
●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
added any of these packages to your imports.
●For the extensions, please create a new Python source file called 
‘CS3**_coin_detection_extension.py’
; this will ensure your extension part doesn’t mix up with the 
main component of the assignment. Remember, your algorithm has to pass the main component 
first!
●Including a short PDF report about your extension.
●Important: Use a lab computer to test if your code works on Windows on a different machine 
(There are over 300 students, we cannot debug code for you if it doesn’t work!)
3easy_case_1 final output
easy_case_2 final output
easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
5
1. Convert to greyscale and normalize
I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
and round the pixel values to the nearest integer value.
II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
values. Your output for this step should be the same as the image shown on Fig. 2.
Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
Fig. 1: input Fig. 2: step 1 output
We will use this image 
(‘easy_case_1’) as an 
example on this slides2. Edge Detection
I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
6
Hint 4: you should use the BorderIgnore option and set border 
pixels to zero in output, as stated on the slide Filtering, p13.
Hint 5: for computing the edge strength, you may use the 
following equation:
gm
(x, y) = |gx
(x, y)| + |gy
(x, y)|
Absolute grey level 
gradient on the 
horizontal direction
Absolute grey level 
gradient on the vertical 
direction
Edge map on 
horizontal and 
vertical
Fig. 5: Step 2 
output (gm
)
Fig. 4: Edge map 
(gy
) on vertical 
direction
Fig. 3: Edge map 
(gx
) on horizontal 
direction7
3. Image Blurring
Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
Fig. 7.
Hint 1: do not round your output values.
Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
result before moving to the next window.
Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
slide Filtering, p13.
Hint 3: try applying the filter three times to the image sequentially.
Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
4. Threshold the Image
Perform a simple thresholding operation to segment the coin(s) from the black background. After 
performing this step, you should have a binary image (see Fig. 10).
Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
Week 10.
Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
5. Erosion and Dilation
Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
11.
Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
BoundaryZeroPadding option, see lecture slides Filtering, p13.
Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
of times to get the desired output.
Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
Fig. 11: Step 5 output
Fig. 12: Circular 5x5 kernel for 
dilation and erosion10
6. Connected Component Analysis
Perform a connected component analysis to find all connected components. Your output for this 
step should be the same as the image shown on Fig. 13.
After erosion and dilation, you may find there are still some holes in the binary image. That is 
fine, as long as it is one connected component.
Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
12.
Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
in the image, so please store all the bounding box 
locations in a Python list called ‘bounding_box_list’, so 
our program can loop through all the bounding boxes 
and draw them on the output image.
Below is an example of the ‘bounding_box_list’ for our 
example image on the right.
11
7. Draw Bounding Box
Extract the bounding box(es) around all regions that your pipeline has found by looping over 
the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
previously determined connected components. Your output for this step should be the same as 
the image shown on Fig. 14.
Make sure you record the bounding box locations for each of the connected components your 
pipeline has found.
Bounding_box_list=[[74, 68, 312, 303]]
A list of list
Bounding_box_min_x
Bounding_box_min_y Bounding_box_max_x
Bounding_box_max_y
Fig. 14: Step 7 outputInput
Drawing 
Bounding Box
Color to Gray Scale 
and Normalize
Edge 
Detection
Image 
Blurring Thresholding
Dilation and 
Erosion
Connected 
Component Analysis
12
Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
easy_case_4 final output easy_case_6 final outputEXTENSION
For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
●Using Laplacian filter for image edge detection
○Please use the Laplacian filter kernel on the right (see Fig. 15).
○You may need to change subsequent steps as well, if you decide to
use Laplacian filter.
●Output number of coins your pipeline has detected.
●Testing your pipeline on the hard-level images we provided.
○For some hard-level images, you may need to look at the size of the connected components to decide which 
component is the coin.
●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
the image to identify them.
●etc.
Submissions that make the most impressive contributions will get full marks. Please create a new 
Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
short PDF report about your extension. Try to be creative!
14
Fig. 15: Laplacian filter kernel

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:INTE2401代寫、代做Java設計程序
  • 下一篇:CS 369代做、代寫Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99久久亚洲精品蜜臀| 久久精品国产亚洲a| 久久婷婷av| 成人噜噜噜噜| 亚洲精品aa| 美女视频一区免费观看| 精品久久ai电影| 国产中文精品久高清在线不| 精品国模一区二区三区| 美女精品在线观看| 激情偷拍久久| 欧美视频在线观看| 成人日韩视频| 久久精品99国产精品日本| 三级影片在线观看欧美日韩一区二区| 麻豆成人入口| 精品国产三区在线| 国产欧美欧美| 影音先锋在线一区| 99九九久久| 欧美男人天堂| 蜜臀久久久久久久| 一本色道88久久加勒比精品| 成人婷婷网色偷偷亚洲男人的天堂| 亚洲精品播放| 国产精品分类| 一区二区三区国产在线| 欧美第一视频| h片在线观看视频免费免费| 亚洲欧洲一区二区天堂久久| 久久狠狠婷婷| 理论片一区二区在线| 久久丁香四色| 亚洲精品蜜桃乱晃| 综合久久伊人| 亚洲日本中文| 久久亚洲道色| 日本美女一区二区三区视频| 久久精品国产99国产| 国产91在线精品| 福利一区和二区| 99精品国自产在线| 亚洲精品乱码日韩| 福利一区和二区| 另类一区二区| 青青草97国产精品免费观看| 亚洲国产导航| 久久精品五月| 六月丁香婷婷久久| 青青草伊人久久| 日本欧美一区二区| 亚洲人成免费网站| 一区二区三区无毛| 欧美经典一区| 日韩精品a在线观看91| 精品中文字幕一区二区三区四区 | 欧美黄色网络| 一本综合久久| 久久久久久久久久久久久久久久久久久久| 青青青爽久久午夜综合久久午夜| 日日欢夜夜爽一区| 欧美国产专区| 亚洲人和日本人hd| 一区二区亚洲视频| 国产成人tv| 99久久精品费精品国产| 91成人观看| 免费不卡在线观看| 香蕉成人av| 国产欧美日韩综合一区在线播放| 亚洲精品麻豆| 日本午夜精品| 国产乱论精品| 欧美婷婷在线| 日韩av自拍| 日本肉肉一区| 日韩国产精品久久| 国产精品一线天粉嫩av| 国产日韩中文在线中文字幕| 久久成人综合| 亚洲免费影视| 91九色综合| 欧美精品18| 日韩一区二区三区在线看| 久久久青草婷婷精品综合日韩| 亚洲精品成人无限看| 蜜芽一区二区三区| 亚洲国产高清一区| 久久不见久久见国语| 久久a爱视频| 午夜宅男久久久| 狠狠久久综合| 国产一区不卡| 亚洲高清av| 久久久久久自在自线| 久久精品国产99国产| 国内黄色精品| 国产综合精品一区| 黄色aa久久| 中文一区一区三区免费在线观看| www.亚洲一二| 久久午夜精品| 日本不卡一区二区三区| 天堂va欧美ⅴa亚洲va一国产| 香蕉精品视频在线观看| 黄色在线观看www| 中文视频一区| 亚洲国内精品| 欧产日产国产精品视频| 综合在线一区| 激情欧美丁香| 一本大道色婷婷在线| 国产麻豆精品久久| 欧美1区2区| 超碰这里只有精品| 日韩成人午夜精品| 亚洲尤物在线| 免费在线成人| 精品理论电影在线| 97人人精品| 亚洲另类春色校园小说| 激情欧美国产欧美| 羞羞视频在线观看一区二区| 日本免费一区二区视频| 视频在线观看91| 99精品视频在线免费播放| 香蕉一区二区| 久久精品国产精品亚洲精品| 99这里只有精品视频| 都市激情亚洲一区| 久久不见久久见国语| 亚洲主播在线| 亚洲一区导航| 国产美女一区| 高清在线一区二区| 999在线观看精品免费不卡网站| 久久精品72免费观看| 美女av一区| 69堂精品视频在线播放| 国产乱人伦精品一区| 韩国精品主播一区二区在线观看 | 66精品视频在线观看| 国产精品xx| 精品国产欧美| 日韩欧美高清| 99re热精品视频| 超碰一区二区| 高清日韩欧美| 国产精品亲子伦av一区二区三区| 久久精品国产亚洲5555| 国产经典一区| 99精品视频在线| 日本中文字幕一区| 日韩午夜黄色| 午夜先锋成人动漫在线| 欧美mv日韩| 激情小说亚洲色图| 亚洲成人毛片| 午夜久久黄色| 国产精品视频首页| 亚洲最新无码中文字幕久久| 精品国产午夜肉伦伦影院| 青青在线精品| 女人香蕉久久**毛片精品| 欧美黄色免费| av在线最新| 欧美日韩导航| 亚洲三级视频| 久热re这里精品视频在线6| 日本亚洲天堂网| yy6080久久伦理一区二区| 不卡一区2区| 久久最新网址| 亚洲www免费| 欧美日韩国产高清| 日韩aaa久久蜜桃av| 日韩精品免费观看视频 | 国产精品久久久久久久久久10秀| 一区二区精彩视频| 黑人一区二区三区| 蜜桃视频一区| 欧美成a人免费观看久久| 久久精品人人| 91影院成人| 久久国产综合| 欧美日韩爱爱| 国产精品久久久久久模特 | 日本午夜一区二区| 国产精品国产一区| 蜜桃视频欧美| 国产日本亚洲| 中文字幕一区二区三三| 青青青免费在线视频| 欧美一区二区麻豆红桃视频| 日韩欧美四区| 麻豆精品在线视频| 日韩激情在线| 乱码第一页成人| 欧美日韩一二| 视频免费一区二区|