加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STSCI 4060代做、代寫Python設計程序
STSCI 4060代做、代寫Python設計程序

時間:2024-05-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STSCI **0/5045 Final Project 
(Due: 4:30 PM, May 16, 2024) 
Important: Read and follow this whole document carefully! 
How to submit: submit your project report to the Canvas course website with a single zip file, 
which combines all your files. 
General instructions: 
• Do your own work. Any cheating behavior (for example, submitting code similar to 
that of other student(s), copying code from an Internet source, etc.) may result in a 
serious consequence (e.g., getting zero points, failing the class, …). If you have a 
question about the project, you should directly email your instructor. 
• Start the project early. Programming is time consuming; you will need significant 
amount of time and patience to code some portions of the project. Do not expect to 
finish it on the due day. 
• Test your code (especially the .cgi files) separately from other systems. When you have 
multiple software systems connected, it is harder to debug. 
• Add sufficient documentation to your code so that people understand your algorithm 
and what your code does. This is a requirement of this project. 
• Do not edit the raw data file in any way. Your results will be compared to the standard 
solutions. 
• Make sure that you have included all the components in your submission (see the 
details at the end of this document on pages 3 and 4). Your grader will run your 
programs on his/her computer; if something is missing your programs will not run. 
 
In this project you will have an opportunity to integrate Python programming, Oracle database, 
database-driven dynamic web pages, and Python data analysis modules with Jupyter (IPython) 
notebook using the data that are processed with the above integration. You are given a raw 
data file, honeybee_gene_sequences.txt, which was downloaded from the NCBI web site. We 
dealt with the protein data in the class; however, genes are different kinds of biomolecules. 
Unlike proteins that are composed of 20 amino acids, genes are only formed with four building 
elements: adenine (A), cytosine (C), guanine (G) and thymine (T). They are called nucleotides, a 
sequence of which forms a gene, which then determines the sequence of a protein. Thus, the 
compositions of the nucleotides and their relative frequencies, especially the combined relative 
frequency of C and G (i.e., the sum of the percentages of C and G in a gene sequence), have 
important biological (or medical) meanings. For this project, you will do the following: 
 
 1. Design a web page (using KompoZer or another similar program) to allow a user to enter 
a file name (here honeybee_gene_sequences.txt) and the full path to the location where 
the file is stored so that the user can upload the data file by clicking the Submit button 
on the web page. 
2. Write a specific .cgi file with Python to accept the user input from the web page, process 
the data and store the processed data in an Oracle database table, which is also created 
 
within the .cgi file using the Python-Oracle integration approach. In this .cgi file, you 
need to at least include the following functions: 
 
 A. The main() function to receive the user input from the web page. 
B. The processInput() function to do the following: 
a) Read in the contents of the data file. 
b) In order to extract the right nucleotide (or gene) sequences for all 
possible cases (you can see that most times the nucleotide sequences 
start right after the substring, mRNA, but not always), you are required to 
insert the substring, _**gene_seq_starts_here**_, right before the 
nucleotide sequences of every bee gene (or entry) through Python 
programming when you read in (or process) the raw data line by line. In 
this way, you will use the _**gene_seq_starts_here**_ substring as the 
starting point to extract the nucleotide sequences later. Note: There are 
different ways to extract the genes from the raw data. For the 
requirement specified above, you should just treat it as a programming 
requirement of this project. 
c) Extract the gi number and nucleotide sequence of each gene (or entry). 
d) Make sure that your Python program correctly reads in the gene (or 
nucleotide) sequence of the last entry in the raw data file. 
e) Calculate the relative frequencies of each nucleotide in every gene. 
f) Calculate the combined relative frequency of the nucleotides G and C, 
freq_GC, which is obtained by adding the relative frequencies of G and C. 
g) Connect Python to the Oracle database system. 
h) Create an Oracle table called beeGenes to store gi numbers, nucleotide 
sequences, the relative frequencies of the four nucleotides and the 
combined relative frequencies of the nucleotides G and C, freq_GC. So, 
your beeGenes table has seven columns. 
i) When you write the data to the database table, you are required to use 
the Oracle bind variable approach and the batch writing method by 
setting the bindarraysize to a certain number (refer to the lecture slides if 
needed). 
j) In order not to truncate any gene sequence, you need to find an 
appropriate number for the sequence input size. Thus, you are required 
to write a separate Python program (which should also be submitted for 
grading) to determine the maximum number of nucleotides of all the 
genes in the data file. 
C. fileToStr() to return a string containing the contents of the named html file. 
D. makePage() to make the final formatted string (or webpage) for displaying on a 
web page. 
3. Design a template web page to acknowledge that the uploading process was successful 
and that the data were processed and stored in the database as planned. There is a 
button on which a user can click if the user wants to see some results, retrieved from 
the Oracle database table you just created. 
4. Code another .cgi file with Python to retrieve data from the database table (beeGenes). 
The functions you need are similar to those in the previous .cgi file, but in the 
processInput() function, you are required to use a Python dictionary and the format 
 
string mechanism when you extract data from beeGenes. In this function, you will run 
queries against the beeGenes table to find the gi numbers of those bee genes that have 
the highest relative frequencies of nucleotide A, C, G, or T so that you can display these 
on the final web page when the user clicks the “Click to See Some Result” button on the 
confirmation page of data submission. Note that you may have a situate when multiple 
genes meet the same condition. Your code should take care of this kind of situation 
automatically. When that happens, you must list all the gi numbers in the same cell of 
your webpage table, with one gi number per line. 
5. Design another template web page to display the results gathered from the database. 
Inserting a hyperlink of the nucleotides to another web page is optional. 
6. You use the local server to run all the web services in this project, using port number 
8081. 
7. Write a Python program to run a query against the Oracle table beeGenes to show that 
you earlier successfully extracted the gene sequence of the last entry of the raw data 
file. To do so, you run a query for the gene sequence by providing the related gi number, 
which is 1****7436. Include both your Python code and the query result in your report. 
8. Connect Python to the Oracle database and conduct a K-Means cluster analysis in a 
Jupyter notebook. You should only use three columns in the beeGenes table: freq_A 
(relative frequency of the nucleotide A), freq_T (relative frequency of the nucleotide T) 
and freq_GC for this analysis due to some biological reasons. 
 
In your Jupyter notebook, you should use three cells: the 1st
 cell is for importing all 
the necessary Python modules for this analysis; the 2nd cell is to connect Python to 
your Oracle database and create a numpy array containing the three columns of 
data that are read from the beeGenes table in your Oracle database; and the 3rd cell 
is for carrying out the K-Means analysis and plotting a 3D scatter plot using the three 
columns of data based on the clusters identified by the K-Means analysis. 
 
The K-Means settings are: n_cluster=7, init='random', n_init=10, max_iter=500, 
tol=1e-4, and random_state=0. Then, you create a scatter plots with a total figure 
size of 14X14. Use the same type of marker ('o') for all the clusters, set s to 20, set 
labels to "Cluster 1" to "Cluster 7" for the cluster values of 0 to 6 that are found by 
the K-Means algorism, respectively. Set the colors as follows: red for Cluster 1, blue 
for Cluster 2, aqua for Cluster 3, black for Cluster 4, purple for Cluster 5, magenta for 
Cluster 6, and green for Cluster 7. 
 
Mark the centroid of each cluster with a star: set s to 100, color to red and label to 
Centroids. Give the title "K-Means" to the plot. The legends should be displayed in 
the upper right corner of the plot. 
 
After your code works correctly, run all the cells in your Jupyter notebook at once. 
Submit the notebook file (.ipynb) and an HTML file of the same notebook (.html). 
 
Your report should at least contain the following items: all your code, outputs and screenshots, 
which must be combined into a single PDF file, arranged in the order they appear in the project. 
You must mark all your items clearly. Moreover, your Python and html program files must be 
 
submitted as separate files, which must be kept in the same folder (no subfolders) so that your 
grader can run your programs easily. The following is a detailed list of the files/items to submit. 
 
• All Python program files (with the .py extension), including the program to find the 
maximum number of nucleotides in a gene sequence and the program to query the 
database to confirm that you successfully extracted the gene sequence of the last 
entry of the raw data file. 
• All .cgi files, which are technically Python files but contain the .cgi extension. 
• All .html files, including the template and non-template .html files. 
• The design window of your input web page. 
• The design windows of your two template web pages. 
• A screenshot of your input web page with the input value entered. 
• A screenshot of your confirmation web page that displays that you have successfully 
submitted the data, etc. 
• A screenshot of your final web page that displays the results of database query 
similar to the following screenshot (but it is only an example here, and the actual 
results were erased). 
 
• A screenshot of the local CGI server log. 
• The result of Oracle table query for the gene sequence of the last entry, which 
should be a Python shell screenshot (you may need more than one screen to display 
the complete sequence). 
• Your Jupyter notebook file (.ipynb). 
• The Jupyter notebook HTML file (.html). 
• The localCGIServer.py file. 
• The raw data file, honeybee_gene_sequences.txt. 
 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















 

掃一掃在手機打開當前頁
  • 上一篇:IERG2080代做、代寫C/C++程序語言
  • 下一篇:菲律賓開車需要駕照嗎(開車注意事項)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    天堂网在线观看国产精品| 日韩高清欧美| 另类中文字幕国产精品| 国产精品亚洲欧美一级在线| 99久久激情| 日韩国产激情| 伊人成人在线视频| 青娱乐精品在线视频| 欧美男人操女人视频| 在线成人av观看| 宅男在线一区| 亚洲麻豆av| 亚洲激情五月| 伊人国产精品| 中文精品在线| 国产高清精品二区| 日韩毛片网站| 九一成人免费视频| 欧美日韩网站| 欧美日韩精品免费观看视完整| 一区二区三区亚洲变态调教大结局| 日韩精品久久久久久| 好吊视频一区二区三区四区| 免费精品一区二区三区在线观看| 国产精品精品| 日本免费一区二区三区视频| freexxx性亚洲精品| 欧美三区视频| 日韩深夜影院| 日韩专区精品| 蜜臀av一区二区| jizz久久精品永久免费| 亚洲+变态+欧美+另类+精品| 国产传媒在线观看| 亚洲欧美视频一区二区三区| 久久综合给合| 久久爱www成人| 欧美激情偷拍| 美国三级日本三级久久99| 激情久久五月| 亚洲夜间福利| 免费观看久久av| 亚洲天堂偷拍| 欧美~级网站不卡| 欧美1级日本1级| 国模吧视频一区| 图片区亚洲欧美小说区| 欧美69wwwcom| 日韩视频一区| 亚洲一区欧美激情| 国产精品日韩| 免费成人美女在线观看| 日本欧美在线观看| 黄色在线网站噜噜噜| 在线日韩电影| 亚洲制服欧美另类| 国产精品亚洲片在线播放| 亚洲精品在线影院| av在线一区不卡| 久久久久久一区二区三区四区别墅| 欧洲美女精品免费观看视频| 日本久久久久| 99视频一区| 亚洲一区图片| 九色porny丨首页入口在线| 深夜成人在线| 国产精品亚洲产品| 亚洲国产免费看| 亚洲人成精品久久久| 久久国际精品| 亚洲成av人片一区二区密柚| 五月天综合网站| 成人黄色小视频| 日韩成人影音| 久久资源综合| 久久久久久久久久久久电影| 99精品国产一区二区三区2021| 久久久久久久久丰满| 午夜视频精品| 日韩伦理精品| 麻豆精品视频在线| 日韩成人免费在线| 久久日文中文字幕乱码| 久久亚洲国产精品一区二区| 制服丝袜日韩| 天堂av在线一区| 成人看片网站| 欧美国产亚洲精品| 成人在线免费观看视频| 精品1区2区3区4区| 日韩高清成人| 超碰国产精品一区二页| 超碰一区二区三区| 日本一区二区乱| 婷婷成人在线| 欧美mv日韩| 亚洲国产网站| 极品一区美女高清| 亚洲欧美清纯在线制服| 日韩国产一区| 成人在线视频www| 久久久国产精品一区二区中文| 国产欧美视频在线| 亚洲精品成人| 羞羞视频在线观看一区二区| 午夜精品成人av| 国产精品免费精品自在线观看| 狠狠一区二区三区| 日韩中文欧美在线| 亚洲人成高清| 美女主播精品视频一二三四| 石原莉奈在线亚洲二区| 免费一区视频| 秋霞欧美视频| 黄视频网站在线观看| 亚洲人成777| 性xxxx欧美老肥妇牲乱| 亚洲精品.com| 嫩呦国产一区二区三区av | 色偷偷偷在线视频播放| 久久久久97| 国语产色综合| 国产资源一区| 欧美一级二级三级视频| 久久久久久久尹人综合网亚洲| 国产精品啊v在线| 久久人人97超碰国产公开结果| 国产福利电影在线播放| 久久成人高清| 最新国产拍偷乱拍精品 | 先锋影音网一区二区| heyzo欧美激情| 亚洲一区资源| 日韩av不卡在线观看| 男人的天堂成人在线| 欧美日韩一区二区三区四区在线观看| 精品网站aaa| 亚洲91在线| 国产成人高清精品免费5388| 狠狠躁少妇一区二区三区| 日产国产高清一区二区三区| 老鸭窝91久久精品色噜噜导演| 99精品美女视频在线观看热舞| 96视频在线观看欧美| 日韩亚洲精品在线观看| 女优一区二区三区| 日韩高清不卡一区二区| 欧美日韩国产免费观看视频| 日本欧美一区二区三区乱码| 自拍亚洲一区| 欧美激情aⅴ一区二区三区| 国产精品88久久久久久| 亚洲精品女人| 欧美资源在线| 亚欧日韩另类中文欧美| 国产精品国产三级国产在线观看| 亚洲综合福利| 在线亚洲人成| 99久久99久久精品国产片果冰| 美女视频一区二区| 亚洲精品网址| 97色婷婷成人综合在线观看| 可以看av的网站久久看| 午夜视频在线观看精品中文| 日本在线播放一二三区| 久久精品观看| 国产精品九九| 色天天综合网| 精品网站aaa| 国内精品嫩模av私拍在线观看| 玖玖在线精品| 欧美三级午夜理伦三级小说| 麻豆久久久久久| 日韩精品一二三四| 青青一区二区三区| 亚洲三级观看| 国产精品高颜值在线观看| 欧美日韩导航| 在线观看欧美| 超碰aⅴ人人做人人爽欧美| 国产成人夜色高潮福利影视| 青草国产精品久久久久久| 乱码第一页成人| 精品美女视频| 国产欧美日本| 精品日本视频| 在线亚洲激情| 精品国产一区二区三区噜噜噜| 麻豆传媒一区二区三区| 97久久夜色精品国产| 亚洲福利一区| 日韩精品一区二区三区中文在线| 日韩成人在线一区| 亚洲中午字幕| 成人久久电影| 亚洲天堂日韩在线| 麻豆专区一区二区三区四区五区| 色婷婷热久久| 最新日韩在线| 久久精品一区二区不卡|