加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP52715 代做、代寫 Python設計編程

時間:2024-04-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP52715 Deep Learning for Computer Vision & Robotics (Epiphany Term, 202**4)
Summative Coursework - 3D PacMan
Coursework Credit - 15 Credits Estimated Hours of Work - 48 Hours Submission Method - via Ultra
Release On: February 16 2024 (2pm UK Time)
Due On: March 15 2024 (2pm UK Time)
– All rights reserved. Do NOT Distribute. –
  Compiled on November 16, 2023 by Dr. Jingjing Deng

1
1.
2.
3.
4.
5.
6.
Coursework Specification
This coursework constitutes **% of your final mark for this module, where there are two mandatory tasks: Python programming and report writing. You must upload your work to Ultra before the deadline specified on the cover page.
The other 10% will be assessed separately based on seminar participation. There are 3 seminar sessions in total, the mark awarding rule is as such: (A) participating in none=0%, (B) participating in 1 session=2%, (C) participating in 2 sessions=5%, (D) participating in all sessions=10%.
This coursework is to be completed by students working individually. You should NOT ask for help from your peers, lecturer, and lab tutors regarding the coursework. You will be assessed on your code and report submissions. You must comply with the University rules regarding plagiarism and collusion. Using external code without proper referencing is also considered as breaching academic integrity.
Code Submission: The code must be written in Jupyter Notebook with appropriate comments. For constructing deep neural network models, use PyTorch1 library only. Zip Jupyter Note- book source files (*.ipynb), your dataset (if there is any new), pretrained models (*.pth), and a README.txt (code instruction) into one single archive. Do NOT include the original “Pac- Man Helper.py”, “PacMan Helper Demo.ipynb”, “PacMan Skeleton.ipynb”, “TrainingImages.zip”, “cloudPositions.npy” and “cloudColors.npy” files. Submit a single Zip file to GradeScope - Code entry on Ultra.
Report Submission: The report must NOT exceed 5 pages (including figures, tables, references and supplementary materials) with a single column format. The minimum font size is 11pt (use Arial, Calibri, Times New Roman only). Submit a single PDF file to GradeScope - Report entry on Ultra.
Academic Misconduct is a major offence which will be dealt with in accordance with the University’s General Regulation IV – Discipline. Please ensure you have read and understood the University’s regulations on plagiarism and other assessment irregularities as noted in the Learning and Teaching Handbook: 6.2.4: Academic Misconduct2.
            Figure 1: The mysterious PhD Lab.
 1 https://pytorch.org/
2 https://durhamuniversity.sharepoint.com/teams/LTH/SitePages/6.2.4.aspx
1

2 Task Description (**% in total)
2.1 Task 1 - Python Programming (40% subtotal)
In this coursework, you are given a set of 3D point-clouds with appearance features (i.e. RGB values). These point-clouds were collected using a Kinect system in a mysterious PhD Lab (see Figure.1). Several virtual objects are also positioned among those point clouds. Your task is to write a Python program that can automatically detect those objects from an image and use them as anchors to collect the objects and navigate through the 3D scene. If you land close enough to the object it will be automatically captured and removed from the scene. A set of example images that contain those virtual objects are provided. These example images are used to train a classifier (basic solution) and an object detector (advanced solution) using deep learning approaches in order to locate the targets. You are required to attempt both basic and advance solutions. “PacMan Helper.py” provides some basic functions to help you complete the task. “PacMan Helper Demo.ipynb” demonstrates how to use these functions to obtain a 2D image by projecting 3D point-clouds onto the camera image-plane, and how to re-position and rotate the camera etc. All the code and data are available on Ultra. You are encouraged to read the given source codes, particularly “PacMan Skeleton.ipynb”.
Detection Solution using Basic Binary Classifier (10%). Implement a deep neural network model that can classify the image patch into two categories: target object and background. You can use the given images to train your neural network. It then can be used in a sliding window fashion to detect the target object in a given image.
Detection Solution using Advance Object Detector (10%). Implement a deep neural network model that can detect the target object from the image. You may manually or automatically create your own dataset for training the detector. The detector will predict bounding boxes that contain the object from a given image.
Navigation and Collection Task Completion (10%). There are 11 target objects in the scene. Use the trained models to perform scene navigation and object collection. If you land close enough to the object it will be automatically captured and removed from the scene. You may compare the performance of both models.
Visualisation, Coding Style, and Readability (10%). Visualise the data and your experimental results wherever is appropriate. The code should be well structured with sufficient comments for the essential parts to make the implementation of your experiments easy to read and understand. Check the “Google Python Style Guide”3 for guidance.
2.2 Task 2 - Report Writing (50% subtotal)
You will also write a report (maximum five pages) on your work, which you will submit to Ultra alongside your code. The report must contain the following structure:
Introduction and Method (10%). Introduce the task and contextualise the given problem. Make sure to include a few references to previously published work in the field, where you should demon- strate an awareness of the relevant research works. Describe the model(s) and approaches you used to undertake the task. Any decisions on hyper-parameters must be stated here, including motivation for your choices where applicable. If the basis of your decision is experimentation with a number of parameters, then state this.
Result and Discussion(10)%). Describe, compare and contrast the results you obtained on your model(s). Any relationships in the data should be outlined and pointed out here. Only the most important conclusions should be mentioned in the text. By using tables and figures to support the section, you can avoid describing the results fully. Describe the outcome of the experiment and the conclusion that you can draw from these results.
Robot Design (20%). Consider designing an autonomous robot to undertake the given task in the real scene. Discuss the foreseen challenges and propose your design, including robot mechanic configuration, hardware and algorithms for robot sensing and controlling, and system efficiency etc. Provide appropriate justifications for your design choices with evidence from existing literature. You may use simulators such as “CoppeliaSim Edu” or “Gazebo” for visualising your design.
3 https://google.github.io/styleguide/pyguide.html
2
 
Format, Writing Style, and Presentation (10%). Language usage and report format should be in a professional standard and meet the academic writing criteria, with the explanation appropriately divided as per the structure described above. Tables, figures, and references should be included and cited where appropriate. A guide of citation style can be found at library guide4.
3 Learning Outcome
The following materials from lectures and lab practicals are closely relevant to this task:
1. Basic Deep Neural Networks - Image Classification.
2. Generic Visual Perception - Object Detection.
3. Deep Learning for Robotics Sensing and Controlling - Consideration for Robotic System Design.
The following key learning outcomes are assessed:
1. A critical understanding of the contemporary deep machine learning topics presented, and how these are applicable to relevant industrial problems and have future potential for emerging needs in both a research and industrial setting.
2. An advanced knowledge of the principles and practice of analysing relevant robotics and computer vision deep machine learning based algorithms for problem suitability.
3. Written communication, problem solving and analysis, computational thinking, and advanced pro- gramming skills.
The rubric and feedback sheet are attached at the end of this document.
 4 https://libguides.durham.ac.uk/research_skills/managing_info/plagiarism 3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:菲律賓申請中國探親簽證流程 入華探親簽辦理材料
  • 下一篇:EEE-6512 代寫、代做 java/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    69堂精品视频在线播放| 国产精品色在线网站| av中文字幕在线观看第一页| 久久99偷拍| 国产成人精品免费视| av在线一区不卡| 亚洲欧美日本日韩| 精品精品99| 国内精品久久久久久久影视简单| 新版的欧美在线视频| 伊人久久亚洲美女图片| 欧美日韩精品一区二区三区在线观看| 亚洲中无吗在线| 欧美一级做a| 水蜜桃精品av一区二区| 欧美成人综合| 青青草91久久久久久久久| 国产一区二区在线观| 一区二区三区国产在线| 超级碰碰久久| 视频一区二区三区在线| 国产韩国精品一区二区三区| 国产成人tv| 日韩成人免费在线| 欧美经典影片视频网站| 日本视频中文字幕一区二区三区| 日本综合久久| 一本大道色婷婷在线| 蜜臀av性久久久久蜜臀aⅴ| 天天久久综合| 亚洲激情久久| 亚洲高清av| 久久久影院免费| 久久精品凹凸全集| eeuss鲁片一区二区三区| 国产一区二区三区四区二区| 欧美日韩18| 日本不卡高清视频| 一区二区三区四区五区精品视频 | 欧美日韩国产一区二区三区不卡| 国语一区二区三区| 4438全国亚洲精品观看视频| 少妇精品久久久| 国产在线不卡一区二区三区| 亚洲日本欧美| 中文在线日韩| 伊人亚洲精品| 国产精品亚洲欧美一级在线| 亚洲我射av| 国产精品一线天粉嫩av| 国产一区二区三区四区二区| 久久99国产成人小视频| 亚洲大片精品免费| 日韩欧美中文在线观看| 日韩精品一区二区三区中文| 91精品久久久久久综合五月天| 久久av偷拍| 欧美日韩网址| 久久精品高清| 欧美日韩日本国产亚洲在线| 午夜在线精品| 黄毛片在线观看| 婷婷激情一区| 国产精品尤物| 国内揄拍国内精品久久| 中文在线播放一区二区| 亚洲另类av| 亚洲一区二区三区中文字幕在线观看| heyzo欧美激情| 在线视频亚洲专区| 亚洲一区二区动漫| 中文字幕人成乱码在线观看| 四虎地址8848精品| 中文字幕乱码亚洲无线精品一区| 成年永久一区二区三区免费视频| 国产欧美日韩影院| 荡女精品导航| 亚州av乱码久久精品蜜桃| 亚洲一区黄色| www.精品| 国一区二区在线观看| 日韩va亚洲va欧美va久久| 国产精品白丝一区二区三区| 亚洲欧美亚洲| 97精品国产| 日韩高清中文字幕一区| 亚洲小说图片视频| 久久激情婷婷| 视频一区二区国产| 国产极品一区| 欧美热在线视频精品999| 欧美亚洲色图校园春色| 免费日韩av片| 成人精品国产亚洲| 欧美美乳视频| 欧美中文字幕一区二区| 三区四区不卡| 麻豆国产欧美日韩综合精品二区 | 亚洲香蕉久久| 欧美wwwwww| 免费视频最近日韩| 日韩国产欧美一区二区三区| 日韩福利视频一区| 在线日韩视频| 天堂av中文在线观看| 久久综合社区| 人人香蕉久久| 美女福利一区二区| 欧美极品在线观看| 国产一区二区三区自拍| 日韩免费av| 亚洲妇女av| 日韩亚洲国产精品| 久久精品国产在热久久| 精品国产亚洲一区二区三区在线 | 久久国产生活片100| 日韩欧美中文字幕在线视频| 女人香蕉久久**毛片精品| 成人h在线观看| 日韩国产在线不卡视频| 夜夜爽av福利精品导航| 国产日韩亚洲欧美精品| 青青草国产免费一区二区下载| 欧美3p视频| 久久爱www成人| 国产模特精品视频久久久久| 老司机午夜精品99久久| 麻豆一区二区| se69色成人网wwwsex| 在线综合色站| 久草在线资源站手机版| 亚洲婷婷丁香| 手机亚洲手机国产手机日韩| 99久久99九九99九九九| 伊人情人综合网| 久久伊人亚洲| 国内精品福利| 日本在线不卡视频一二三区| 欧美亚洲国产一区| 久久精品国产久精国产爱| 免费观看成人www动漫视频| av资源亚洲| 国产精品久av福利在线观看| 日韩激情一区| 91欧美极品| 成人国产精品一区二区免费麻豆 | 日韩精品视频中文字幕| 国产精品videosex性欧美| 亚洲另类春色校园小说| 蜜桃视频一区二区三区| 日韩精品一级| 日韩国产一区| 视频福利一区| 久久精品国产精品亚洲综合| 久久一区二区三区电影| 日本视频免费一区| 国产深夜精品| 亚洲欧洲av| 色资源二区在线视频| 欧美黄色影院| 国产精品久久久久久久免费软件| 国产综合视频| 国产一区二区三区精品在线观看| 老妇喷水一区二区三区| 综合激情五月婷婷| 亚洲mmav| 欧美日韩国产探花| 亚洲激情77| 先锋影音一区二区| 亚欧美无遮挡hd高清在线视频| 成人午夜888| 极品在线视频| 久久香蕉国产| 国产不卡av一区二区| 欧美成人a交片免费看| 欧美日韩在线二区| 不卡的国产精品| 日韩一区二区在线| 国产综合精品| 日本欧美高清| 国产成人77亚洲精品www| 99热在线精品观看| 视频一区视频二区欧美| 欧美亚洲一区二区三区| 免费xxxx性欧美18vr| 精品免费在线| 国产精品亚洲欧美一级在线| 日韩电影在线视频| 在线成人激情| 成人在线免费视频观看| 91精品福利观看| 先锋欧美三级| 亚洲免费综合| 伊人精品一区| 日韩电影在线免费| 欧美人成在线| 97精品国产综合久久久动漫日韩| 国产美女精品| 99久久99久久精品国产片果冰| 欧美人与拘性视交免费看|