加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫EMATM0050 DSMP MSc in Data Science

時間:2024-04-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



 University of Bristol MSc in Data Science; DSMP (Data Science Mini Project; EMATM0050)
Predicting T-Cell Receptor Specificity
T cells (T lymphocytes) are among the most important immune system cells with a vital role in adaptive immunity. T cells recognise cells in the body infected by viruses, bacteria or cells that have undergone cancer transformation. After recognising the infected or cancerous cells, T cells eliminate them from the body thereby preventing the spread of infection or cancer.
T cells recognise their targets through their T Cell Receptors (TCRs) expressed on their cell membrane. A T Cell Receptor consists of an alpha and a beta subunit. The evolutionary arms race between pathogens and the immune system has resulted in a mechanism for generation of a huge number of unique TCRs: and this is essential for a proper immune response against infections and cancer. Although TCR genes are encoded in the genome, their diversity is massively enhanced in several ways: (i) each TCR is composed of a pair of proteins (either alpha + beta chains or gamma + delta chains); (ii) rather than being encoded as a single gene, the DNA encoding the variable region of each of these chains is formed by joining 3 or 4 different stretches of DNA (gene segments) in a process is called VDJ recombination. Each alpha subunit contains a single V and J segment and each beta subunit contains a single V, a D and a J segment. Diversity is provided by the fact that the genome encodes multiple V, D and J segment; (iii) The joining of these segments involves mechanisms which insert and delete nucleotides in a pseudorandom fashion, maximising diversity in the joining region (the CDR3), the region of the TCR chain which contacts the peptide antigen. (ref 1)
T Cell Receptors (TCRs) constitute one of the most promising classes of emerging therapeutics. Whilst TCRs are amongst the most complex facets of immune biology, engineering of an optimum TCR can transform immunotherapies and personalised medicines. The TCR repertoire at any time point reflects on the person’s health and contains a memory of all past experiences. However, CRs are highly variable and their specificities aren’t easily predictable with traditional empirical methods.
In this project you will analyse TCR repertoire from the VDJdb (link) and use machine learning to predict TCRs that will bind to specific epitopes.
 
 Tasks
1. Data Download and Preprocessing
1.1 Download the zip file from GitHub and focus on the VDJdb.txt file.
1.2 Preprocess the dataset. Figure out what each column represents and keep
columns that will help you complete the project.
Predicting TCR specificity from sequence alone is the holy grail of immunotherapy. TCRs that are specific to the same target, often have very similar sequences, thereby TCR sequence – target patterns emerge in the data.
A crude approach could be to represent amino acids of the TCR or key regions of it using one-hot representation.
2. What are the limitations of this approach in downstream analysis? Could you describe a way to overcome them (Hint: Consider the CDR3 length distribution. We are looking for a high level description of the limitation and an approach that would overcome it. No algorithm development is required.)
A common method to predict specificity from a sequence is described in Vujovic et.al. (1). It creates some kind of distance or similarity score matrix of TCR sequences and uses that representation to train models that can classify TCRs based on specificity (Fig 1.).
 
  3. Estimate a distance/similarity matrix representation of the data. Calculate these metrics for the alpha and the beta chains separately, then calculate these for the combined alpha and beta chains too. (Hint: TCRDist, GLIPH or GIANA can be used for this. Alternatively, you can define your own similarity metric.)
4. Plot the TCRs in 2 dimensions and colour them based on specificity. Compare the plots for the alpha, the beta and the combined alpha-beta chains. Comment on your findings. (Hint: scikit-learn has a plethora of dimensionality reduction tools. Some examples are PCA, tSNE and UMAP.)
5. Write code to cluster TCRs. How well do TCRs cluster based on specificity? Can you explain why they do/don’t?
6. Write an algorithm that can predict antigen specificity from sequence. You can use any supervised/unsupervised algorithm to predict specificity. Comment on the performance of the model and reason why it performs good or bad. (Hint: Any reasonable modelling approach is fine. However, keep in mind that simpler models sometimes provide more insights regarding the underlying problem.)

 Bibliography/References
1. Vujovic M, Degn KF, Marin FI, Schaap-Johansen AL, Chain B, Andresen TL, Kaplinsky J, Marcatili P. T cell receptor sequence clustering and antigen specificity. Comput Struct Biotechnol J (2020) 18:2166–21**. doi:10.1016/j.csbj.2020.06.041
2. Mayer-Blackwell. TCR meta-clonotypes for biomarker discovery with tcrdist3: quantification of public, HLA- 2 restricted TCR biomarkers of SARS-CoV-2 infection. bioRxiv (2020) 1:75–94.
3. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol (2020) 38:1194–1202. doi:10.1038/s41587-020-0505-4
4. Zhang H, Zhan X, Li B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat Commun (2021) 12:1–11.doi:10.1038/s41467-02**25006-WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:學(xué)習(xí)英語必備的幾大教材!非常全面
  • 下一篇:代做CS 7642 Reinforcement Learning and Decision
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    国产精品s色| 亚洲一区中文| 国产精品一区二区三区av| 欧美高清视频手机在在线| 神马日本精品| 国产精品入口久久| 久久天天久久| 免费人成黄页网站在线一区二区| 欧美日韩一区二区三区在线电影| 欧美区日韩区| 亚洲久久视频| 97成人在线| 国产精品99久久免费| 日韩三区在线| 国产精品成人a在线观看| 欧美一区三区| 9l视频自拍蝌蚪9l视频成人| 一区二区免费不卡在线| 国产综合色区在线观看| 另类图片国产| 天天射成人网| 在线观看欧美理论a影院| 嫩呦国产一区二区三区av| 日本系列欧美系列| 欧美~级网站不卡| 精品久久久中文字幕| 日韩av一区二| 国产乱码精品一区二区三区四区| 久久麻豆视频| 日韩欧美高清在线播放| 蜜桃视频第一区免费观看| 亚洲美女少妇无套啪啪呻吟| 99国产**精品****| 国产精品主播在线观看| eeuss鲁片一区二区三区| 九九99久久精品在免费线bt| 国产精品毛片aⅴ一区二区三区| 99精品欧美| 久久国产尿小便嘘嘘| 亚洲国产一区二区久久| 精品日韩视频| 欧美性aaa| 成人性片免费| 欧美黄色成人| 日本午夜精品久久久久| 激情久久99| 国精品产品一区| 少妇高潮一区二区三区99| 国产69精品久久久久9999人| 国产成人精品一区二区三区免费| 成人在线中文| 免费在线亚洲| 欧美日韩一区二区高清| 国产精品2区| 亚欧洲精品视频在线观看| 国产精品亚洲四区在线观看 | 精品国产中文字幕第一页| 成人在线免费观看91| 999国产精品| 亚洲精品一区二区妖精| 99综合在线| 98精品视频| 99riav视频一区二区| 久久一区中文字幕| 国产精品mm| 日本亚洲一区二区| 国产suv精品一区| 伊人成综合网伊人222| 女人色偷偷aa久久天堂| 午夜在线播放视频欧美| 亚洲女同av| 日韩一区二区三区四区五区| 欧美国产激情| 日韩一级淫片| 日韩精品第二页| 男女男精品视频| 蜜桃久久av| 大型av综合网站| 蜜桃视频在线一区| 久久www成人_看片免费不卡| av在线播放资源| 久久精品国产网站| 久久一区二区三区四区五区| 综合天堂av久久久久久久| 日韩大片在线免费观看| 久久狠狠一本精品综合网| 亚洲一区一卡| 亚洲成人a级片| 国产一区二区三区站长工具| 第九色区aⅴ天堂久久香| 黄色工厂这里只有精品| 中文字幕高清在线播放| 日韩高清不卡一区二区三区| 中文字幕一区二区精品区| 91免费精品国偷自产在线在线| 欧美日韩国产免费观看视频| 欧美午夜网站| 蜜臀久久99精品久久久画质超高清 | 日韩一区二区三区四区五区| 国产欧美精品久久| 日本久久成人网| 三级影片在线观看欧美日韩一区二区| 亚洲成人一区在线观看| 国产亚洲高清一区| 99tv成人| 日韩精品2区| 韩国一区二区三区视频| 99精品综合| 国模精品视频| 国产精品成人**免费视频| 天天躁日日躁成人字幕aⅴ| 国产美女高潮在线| 欧美黄在线观看| 久久一区二区三区电影| 免费亚洲电影在线| 日本aⅴ免费视频一区二区三区| 超碰cao国产精品一区二区| 国产午夜精品一区二区三区欧美| 国产福利一区二区三区在线播放| 偷拍视屏一区| 国产精品三上| 亚洲精品欧洲| 亚洲高清久久| 久久91超碰青草在哪里看| 日韩精品中文字幕吗一区二区| 国产精品视区| 国内精品美女在线观看| 激情亚洲网站| 一区二区高清| 欧美成人基地| av亚洲一区二区三区| 免费观看性欧美大片无片| 男女男精品视频| 国产精品视频一区视频二区| 最新亚洲激情| 久久久久高潮毛片免费全部播放| 久久中文字幕av一区二区不卡| 日本高清不卡一区二区三区视频| 日韩综合一区二区三区| 免费在线观看不卡| 亚洲成a人片77777在线播放| 欧美专区18| 久久av免费| 蜜臀久久久久久久| 国内精品久久久久久99蜜桃| 9色精品在线| 成人免费91| 爽好久久久欧美精品| 久久最新网址| av中文字幕在线观看第一页 | 综合国产视频| 久久91视频| 无码少妇一区二区三区| 色135综合网| 国产日韩在线观看视频| 成人av观看| 国内精品久久久久国产盗摄免费观看完整版| 亚洲天堂黄色| 日本欧美久久久久免费播放网| 激情欧美国产欧美| 国产精品va| 老司机精品视频网站| 日本亚洲免费观看| 亚洲少妇视频| 欧美 亚欧 日韩视频在线 | 亚洲精品在线国产| 香蕉久久久久久| 欧洲杯什么时候开赛| 2019中文亚洲字幕| 成人激情在线| 麻豆成人入口| 欧美精品aa| 综合日韩av| 婷婷精品视频| 成人午夜888| 麻豆蜜桃在线观看| 欧美丝袜一区| 久久99精品久久久久久园产越南| 在线人成日本视频| 91精品啪在线观看国产18| 9999精品| 日韩在线短视频| 狠狠色丁香久久综合频道| 少妇一区二区视频| 日韩欧美激情| 视频一区在线播放| 成人久久一区| 国产精选一区| 美女网站视频久久| 日韩影院免费视频| 久久久久99| 亚洲色图丝袜| 日韩高清一级片| 不卡专区在线| 在线国产一区| 97久久超碰| 国产成人精品999在线观看| 成人交换视频| 蜜桃久久久久久久| 欧美影院三区|