加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP2051代做、代寫C/C++,Python編程

時間:2024-04-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 1
Artificial Intelligence Methods (COMP2051 or AE2AIM)
Prof. Ruibin Bai Spring 2024
Coursework: Perturbative hyper-heuristic for Bin Packing Problem
1. Introduction
Bin packing is one of the most studied combinatorial optimisation problems and has
applications in logistics, space planning, production, cloud computing, etc. Bin packing is
proven to be NP-Hard and the actual difficulties depend on both the size of the problem (i.e.
the total number of items to be packed) and other factors like the distribution of item sizes in
relation to the bin size as well as the number of distinct item sizes (different items may have a
same size).
In this coursework, you are asked to write a C/C++/Python program to solve this problem
using a perturbative hyper-heuristic method. In addition to submitting source code, a
written report (no more than 2000 words and 6 pages) is required to describe your algorithm
(see Section 4 for detailed requirements). Both your program and report must be completed
independently by yourself. The submitted documents must successfully pass a plagiarism
checker before they can be marked. Once a plagiarism case is established, the academic
misconduct policies shall be applied strictly.
This coursework carries 45% of the module marks.
2. Bin Packing Problem (BPP)
Given a set of n items, each item j has a size of aj, BPP aims to pack all items in the
minimum number of identical sized bins without violating the capacity of bins (V). The
problem can be mathematically formulated as follow:
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 2
This mathematical formulation is generally NOT solvable by existing integer programming
solvers like CPlex, Gurobi, LPSolve, especially when the number of items n is large. The
solution space of bin packing problem is characterised by its huge size and plateau-like that
makes it very challenging for traditional neighbourhood search methods. In order to
consistently solve the problem with good quality solutions, metaheuristics and hyperheuristics are used, which is the task of this coursework.
3. Problem instances
Over the years, a large number of BPP instances have been introduced by various research.
See https://www.euro-online.org/websites/esicup/data-sets/ for a collection of different bin
packing problem. In this coursework, we shall provide 3 instances files (binpack1.txt,
binpack3.txt and binpack11.txt), respectively representing easy, medium and hard instances.
From which 10 instances shall be selected for testing and evaluation of your algorithm in
marking. For each test instance, only 1 run is executed, and its objective value is used for
marking the performance component (see Section 5).
4. Experiments conditions and submission requirements
The following requirements should be satisfied by your program:
(1) You are required to submit two files exactly. The first file should contain all your
program source codes. The second file is a coursework report. Please do NOT
compress the files.
(2) Your source code should adopt a clean structure and be properly commented.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 3
(3) Your report should include the followings:
• The main components of the algorithm, including solution encoding, fitness
function, list of low-level heuristics as well as considerations regarding the
intensification and diversification mechanisms. (12 marks).
• Statistical results (avg, best, worst of 5 runs) of the algorithm for all the problem
instances, in comparison with the best published results (i.e. the absolute gap to
the best results). Note that although your report should include results for 5 runs
but your final submission should only have one single run for each instance (i.e.
if you use the sketch code from the lab, set global variable NUM_OF_RUNS=1
before you submit the code). (3 marks)
• A short discussion/reflection on results and performance of the algorithm. (5
marks)
(4) Name your program file after your student id. For example, if your student number
is 2019560, name your program as 2019560.c (or 2019560.cpp, or 2019560.py).
(5) Your program should compile and run without errors on either CSLinux Server or a
computer in the IAMET**. Therefore, please fully tested before submission. You
may use one of the following commands (assuming your student id is 2019560 and
your program is named after your id):
 gcc -std=c99 -lm 2019560.c -o 2019560
or
 g++ -std=c++11 -lm 2019560.cpp -o 2019560
For Python programs, this second can be skipped.
(6) After compilation, your program should be executable using the following
command:
 ./2019560 -s data_fle -o solution_file -t max_time
where 2019560 is the executable file of your program, data_file is one of
problem instance files specified in Section 3. max_time is the maximum time
permitted for a single run of your algorithm. In this coursework, maximum of 30
seconds is permitted. soluton_file is the file for output the best solutions by
your algorithm. The format should be as follows:
# of problems
Instance_id1
obj= objective_value abs_gap
item_indx in bin0
item_indx in bin1
… …
Instance_id2
obj= objective_value abs_gap
item_indx in bin0
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 4
item_indx in bin1
… …
An example solution file for problem data file “binpack1.txt” is available on
moodle.
For submissions using Python, the compilation and running are combined in one
command as follows:
 python 2019560.py -s data_fle -o solution_file -t max_time
(7) The solution file output in (6) by your algorithm (solution_file) is expected to
pass a solution checking test successfully using the following command on
CSLInux:
 ./bpp_checker -s problem_file -c solution_file
where problem_file is one of problem data files in Section 3. If your solution file
format is correct, you should get a command line message similar to: “Your total score
out of 20 instances is: 80." If the solutions are infeasible for some instances, you would
get error messages.
The solution checker can be downloaded from moodle page. It is runnable only on
CSLinux.
(8) Your algorithm should run only ONCE for each problem instance and each run
should take no more than 30 seconds.
(9) Please carefully check the memory management in your program and test your
algorithm with a full run on CSLinux (i.e. running multiple instances in one go). In
the past, some submitted programs can run for **2 instances but then crashed
because of out-of-memory error. This, if happens, will greatly affect your score.
(10) You must strictly follow policies and regulations related to Plagiarism. You are
prohibited from using recent AI tools like ChatGPT/GPT-4 or other similar large
language models (LLMs). Once a case is established, it will be treated as a
plagiarism case and relevant policies and penalties shall be applied.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 5
5. Marking criteria
• The quality of the experimental results (20 marks). Your algorithm shall be tested for
a file containing 10 instances chosen from the provided set of instances. The
performance of your algorithm is evaluated by computing the absolute gap with the
best known results using
   _    =     _       _          −     _     _         
Criteria Mark
abs_gap < 0 New best results! Bonus: 2 extra marks for
each new best result.
abs_gap <= 0 2 marks per instance
0<abs_gap <=1 1.5 marks per instance
1<abs_gap<=2 1 mark per instance
2< abs_gap <=3 0.5 mark per instance
• abs_gap >4 or
• infeasible solution or
• fail to output solution
within required time limit
0 mark
• The quality of codes, including organisation of the functions/methods, naming
conventions and clarity and succinctness of the comments (5 marks)
• Report (20 marks)
6. Submission deadline
3rd May 2024, 4pm Beijing Time
 Standard penalties are applied for late submissions.
7. How to submit
Submit via Moodle.
8. Practical Hints
• Solution encoding for bin packing is slightly more challenging compared with
knapsack program because both the number of bins to be used and the number of
items to be packed in each bin are parts of decisions to be optimised. Therefore, the
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.**
data structure that is used to hold the packing information cannot be implemented via
fixed-size arrays. You may consider to use vector from C++ STL (standard template
library) which requires you to include <vector.h> as header file. If you prefer C style
without classes, the following data type would be also acceptable:
struct bin_struct {
 std::vector<item_struct> packed_items;
 int cap_left;
};
struct solution_struct {
 struct problem_struct* prob; //maintain a shallow copy of problem data
 float objective;
 int feasibility; //indicate the feasibility of the solution
 std::vector<bin_struct> bins;
};
In this way, you could open/close bins and at the same time to add/remove items for a
specific bin through API functions provided by the vector library.
• The search space of bin packing problem has a lot of plateaus that make the problem
extremely difficult for simple neighbourhood methods. Therefore, multiple low-level
heuristics are suggested within a perturbative hyper-heuristic method. You are free to
select any of the perturbative hyper-heuristic methods described in
(https://link.springer.com/article/10.1007/s10288-01**0182-8), as well as some of the
more recent ones
(https://www.sciencedirect.com/science/article/pii/S0377221719306526).
• Your algorithm must be runnable on CSLinux and/or computers on IAMET**.
Therefore, you are not permitted to use external libraries designed specifically for
optimisation. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:越南駕駛證簽證辦理(越南駕照的有效期)
  • 下一篇:FIT1047代做、Python/c++程序語言代寫
  • ·代做SWEN20003、代寫C/C++,python編程語
  • ·QBUS6820代做、Python編程語言代寫
  • ·代寫CMSE11475、代做Java/Python編程
  • ·代寫CPSC 217、代做python編程設計
  • ·代寫CMSC 323、代做Java/Python編程
  • ·CMSC 323代做、代寫Java, Python編程
  • ·CS170程序代做、Python編程設計代寫
  • ·COM3524代做、代寫Java,Python編程設計
  • · Root finding part代做、代寫c++,Python編程語言
  • ·代寫ECS 120、代做Java/Python編程設計
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲手机在线| 欧美aaa在线| 亚洲无线视频| 国产精品色婷婷在线观看| 国产在线观看www| 国产在线欧美| 视频二区欧美| 亚洲精品偷拍| 蜜臀久久精品| 国产精品普通话对白| 韩国女主播一区二区三区 | 国产伦一区二区三区| 91精品国产91久久久久久密臀 | japanese国产精品| 日本在线成人| 亚洲一级淫片| 日韩专区视频网站| bbw在线视频| 99伊人成综合| 久久综合av| 91久久精品无嫩草影院| 国产精品日韩精品在线播放 | 永久免费精品视频| 伊人久久综合网另类网站| 精品亚洲美女网站| 97精品一区二区| 日韩午夜在线| 天堂成人娱乐在线视频免费播放网站| 国产成人一区| 欧美日本不卡高清| 国产精品亚洲综合色区韩国| 亚洲免费福利| 97精品国产福利一区二区三区| 欧美日韩精品| 久久久精品久久久久久96 | 国产一区二区精品久| 麻豆国产欧美一区二区三区| 久久精品资源| 丁香久久综合| 日韩毛片在线| 你懂得影院夜精品a| 另类专区亚洲| av影院在线免费观看| 日韩www.| 久久久久久自在自线| 老妇喷水一区二区三区| 在线视频精品| 在线一区免费观看| 中国女人久久久| 一本色道久久精品| 麻豆成人在线| 日本一区二区三区视频| 丝袜亚洲另类欧美综合| 视频一区二区中文字幕| 美女91精品| 国产精品久久久久久久久久10秀| 蜜桃久久av| 91欧美在线| 蜜臀久久精品| 国产精品伦一区二区| 亚洲成人精品综合在线| 蜜臀av国产精品久久久久| 国产精品久久久久一区二区三区厕所| av不卡在线| 视频精品一区二区| 亚洲一区资源| 国产91亚洲精品久久久| 国产情侣一区| 亚洲久草在线| 天美av一区二区三区久久| 日韩激情啪啪| 成人在线免费观看视频| 香蕉视频一区二区三区| 亚洲电影在线一区二区三区| 亚洲美女视频在线免费观看| 喷白浆一区二区| 欧美黑人一区| 日日骚欧美日韩| 欧美久久亚洲| 91欧美日韩在线| 亚洲网址在线| 免费美女久久99| se69色成人网wwwsex| 乱一区二区av| 亚洲资源网站| 激情小说亚洲色图| 狠久久av成人天堂| 国产精品久久久久久久久妇女| 婷婷精品久久久久久久久久不卡| 国产精品啊啊啊| 亚洲精品观看| 国产精品97| 亚洲国产福利| 欧美aⅴ一区二区三区视频| 欧美人与牛zoz0性行为| 久久久成人网| 三级影片在线观看欧美日韩一区二区| 日韩国产激情| 综合天堂av久久久久久久| 中文字幕亚洲在线观看| 欧美大片一区| 欧美日韩国产观看视频| 亚洲久久一区二区| 大色综合视频网站在线播放| 亚洲一区视频| 99精品免费网| 午夜视频在线观看精品中文| 在线一级成人| 丝袜美腿诱惑一区二区三区| 国产精品一区二区三区av | 亚洲福利久久| 欧美裸体在线版观看完整版| 亚洲成人va| 91精品福利观看| 99精品电影| av手机在线观看| 电影一区中文字幕| 在线日韩中文| 中文另类视频| 日韩va欧美va亚洲va久久| 一本一本久久a久久综合精品| 碰碰在线视频| 国产欧美日韩影院| 欧美日韩精品| 日韩高清不卡在线| 欧美三级自拍| 少妇视频一区| 日韩啪啪网站| 蜜臀av一区二区在线观看| 亚洲人妖在线| 久久中文字幕二区| 精品成人av| 91欧美极品| 综合日韩av| 日韩黄色在线观看| 成人激情视频| 美女精品一区最新中文字幕一区二区三区| 国产99精品| 国产精品最新自拍| 久久狠狠久久| 四虎国产精品永久在线国在线 | 午夜不卡影院| 久久av偷拍| 伊人成综合网站| 亚洲一区二区三区中文字幕在线观看| 久久亚洲风情| 欧美欧美黄在线二区| 裸体素人女欧美日韩| 精品一区二区三区四区五区| 91成人免费| 麻豆91小视频| 欧美另类综合| 9999精品视频| 日韩中文字幕区一区有砖一区| 欧美一区一区| 视频一区欧美精品| 久久三级中文| 亚洲优女在线| 99精品美女| 日本va欧美va欧美va精品| 最新成人av网站| 国产精区一区二区| 国产精品毛片一区二区在线看| 精品国产一区二| 日韩欧美自拍| 欧美一区二区三区激情视频| 影音先锋日韩资源| 视频一区二区三区在线| 亚洲精品aⅴ| 天天综合91| 欧美精品一线| 亚洲免费福利一区| 欧产日产国产精品视频| 91精品国产成人观看| 日本欧美加勒比视频| 美女精品在线| 国产毛片久久久| 麻豆精品国产传媒mv男同| 国产女优一区| 91成人在线精品视频| 欧美一区在线看| 水野朝阳av一区二区三区| 国产日韩在线观看视频| 另类一区二区| 亚洲综合精品四区| 福利片在线一区二区| 亚洲日本国产| 青青青免费在线视频| 激情综合自拍| 精品三级久久久| 久久精品国产免费看久久精品| 亚洲自啪免费| 精品久久91| 欧美第一在线视频| 亚洲成人毛片| 蜜臀99久久精品久久久久久软件| 精品亚洲自拍| 国产成人精品免费视| 丰满少妇一区| 色999日韩|