加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INAF U8145、代做c++,Java程序語言

時間:2024-04-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



SIPA INAF U8145
Spring 2024
Problem Set 3: Poverty and Inequality in Guatemala
Due Fri. April 5, 11:59pm, uploaded in a single pdf file on Courseworks
In this exercise, you will conduct an assessment of poverty and inequality in Guatemala. The data come from the
Encuesta de Condiciones de Vita (ENCOVI) 2000, collected by the Instituto Nacional de Estadistica (INE), the
national statistical institute of Guatemala, with assistance from the World Bank’s Living Standards Measurement
Study (LSMS). Information on this and other LSMS surveys are on the World Bank’s website at
http://www.worldbank.org/lsms. These data were used in the World Bank’s official poverty assessment for
Guatemala in 2003, available here.
Two poverty lines have been calculated for Guatemala using these ENCOVI 2000 data. The first is an extreme
poverty line, defined as the annual cost of purchasing the minimum daily caloric requirement of 2, 172 calories.
By this definition, the extreme poverty line is 1,912 Quetzals (Q), or approximately I$649 (PPP conversion), per
person per year. The second is a full poverty line, defined as the extreme poverty line plus an allowance for nonfood items, where the allowance is calculated from the average non-food budget share of households whose
calorie consumption is approximately the minimum daily requirement. (In other words, the full poverty line is the
average per-capita expenditures of households whose food per-capita food consumption is approximately at the
minimum.) By this definition, the full poverty line is 4,319 Q, or I$1,467.
Note on sampling design: the ENCOVI sample was not a random sample of the entire population. First, clusters
(or “strata”) were defined, and then households were sampled within each cluster. Given the sampling design, the
analysis should technically be carried out with different weights for different observations. Stata has a special set
of commands to do this sort of weighting (svymean, svytest, svytab etc.) But for the purpose of this exercise, we
will ignore the fact that the sample was stratified, and assign equal weight for all observations.1 As a result, your
answers will not be the same as in the World Bank’s poverty assessment, and will in some cases be unreliable.
1. Get the data. From the course website, download the dataset ps3.dta, which contains a subset of the variables
available in the ENCOVI 2000. Variable descriptions are contained in ps3vardesc.txt.
2. Start a new do file. My suggestion is that you begin again from the starter Stata program for Problem Set 1 (or
from your own code for Problem Set 1), keep the first set of commands (the “housekeeping” section) changing
the name of the log file, delete the rest, and save the do file under a new name.
3. Open the dataset in Stata (“use ps3.dta”), run the “describe” command, and check that you have 7,230
observations on the variables in ps3vardesc.txt.
4. Calculate the income rank for each household in the dataset (egen incrank = rank(incomepc)). Graph the
poverty profile. Include horizontal lines corresponding to the full poverty line and the extreme poverty line.
(Hint: you may want to create new variables equal to the full and extreme poverty lines.) When drawing the
poverty profile, only include households up to the 95th percentile in income per capita on the graph. (That is,
leave the top 5% of households off the graph.) Eliminating the highest-income household in this way will allow
you to use a sensible scale for the graph, and you will be able to see better what is happening at lower income
levels.
5. Using the full poverty line and the consumption per capita variable, calculate the poverty measures P0, P1, P2.
(Note: to sum a variable over all observations, use the command “egen newvar = total(oldvar);”.)
6. Using the extreme poverty line and the consumption per capita variable, again calculate P0, P1, and P2.
1 In all parts, you should treat each household as one observation. That is, do not try to adjust for the fact that
some households are larger than others. You will thus be calculating poverty statistics for households, using
per-capita consumption within the household as an indicator of the well-being of the household as a whole.
7. Using the full poverty line and the consumption per capita variable, calculate P2 separately for urban and rural
households.
8. Using the full poverty line and the consumption per capita variable, calculate P2 separately for indigenous and
non-indigenous households.
9. Using the full poverty line and the consumption per capita variable, calculate P2 separately for each region.
(Three bonus points for doing this in a “while” loop in Stata, like the one you used in Problem Set 1.)
10. Using one of your comparisons from parts 7-9, compute the contribution that each subgroup makes to
overall poverty. Note that if P2 is the poverty measure for the entire population (of households or of individuals),
and P2 j and sj are the poverty measure and population share of sub-group j of the population, then the
contribution of each sub-group to overall poverty can be written: sj*P2j/P2.
11. Summarize your results for parts 4-10 in a paragraph, noting which calculations you find particularly
interesting or important and why.
12. In many cases, detailed consumption or income data is not available, or is available only for a subset of
households, and targeting of anti-poverty programs must rely on poverty indices based on a few easy-toobserve correlates of poverty. Suppose that in addition to the ENCOVI survey, Guatemala has a population
census with data on all households, but suppose also that the census contains no information on per capita
consumption and only contains information on the following variables: urban, indig, spanish, n0_6, n7_24,
n25_59, n60_plus, hhhfemal, hhhage, ed_1_5, ed_6, ed_7_10, ed_11, ed_m11, and dummies for each region.
(In Stata, a convenient command to create dummy variables for each region is “xi i.region;”.) Calculate a
“consumption index” using the ENCOVI by (a) regressing log per-capita consumption on the variables
available in the population census, and (b) recovering the predicted values (command: predict), (c) converting
from log to level using the “exp( )” function in Stata. These predicted values are your consumption index. Note
that an analogous consumption index could be calculated for all households in the population census, using the
coefficient estimates from this regression using the ENCOVI data. Explain how.
13. Calculate P2 using your index (using the full poverty line) and compare to the value of P2 you calculated in
question 5.
14. Using the per-capita income variable, calculate the Gini coefficient for households (assuming that each
household enters with equal weight.) Some notes: (1) Your bins will be 1/N wide, where N is the number of
households. (2) The value of the Gini coefficient you calculate will not be equal to the actual Gini coefficient for
Guatemala, because of the weighting issue described above. (3) To generate a cumulative sum of a variable in Stata,
use the syntax “gen newvar = sum(oldvar);”. Try it out. (4) If you are interested (although it is not strictly
necessary in this case) you can create a difference between the value of a variable in one observation and the value
of the same variable in a previous observation in Stata, use the command “gen xdiff = x - x[_n-1];”. Be careful
about how the data are sorted when you do this.
What to turn in: In your write-up, you should report for each part any calculations you made, as well as written
answers to any questions. Remember that you are welcome to work in groups but you must do your write-up on
your own, and note whom you worked with. You should also attach a print-out of your Stata code.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做RISC-V、C/C++編程設計代寫
  • 下一篇:菲律賓買房的理由是什么 菲律賓買房的選擇
  • ·代寫ECON 8820、代做c++,Java程序語言
  • ·代寫MISM 6210、Python/java程序語言代做
  • ·CS101 編程代寫、代做 java程序語言
  • ·代寫DTS203TC、C++,Java程序語言代做
  • ·代做Biological Neural Computation、Python/Java程序語言代寫
  • ·program代做、Java程序語言代寫
  • ·CS 2210編程代寫、Java程序語言代做
  • ·代寫159.251編程、代做Java程序語言
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲三级性片| 亚洲女人av| 日日噜噜夜夜狠狠视频欧美人| 国产精品久久久久久久久久白浆| 男女羞羞在线观看| 成人三级视频| 亚洲色图88| 热久久国产精品| 日本sm残虐另类| 美女视频一区免费观看| 日韩电影在线观看一区| 国产极品久久久久久久久波多结野| 群体交乱之放荡娇妻一区二区| 日韩国产在线观看一区| 午夜亚洲一区| 国产丝袜一区| 丁香婷婷久久| 午夜在线a亚洲v天堂网2018| 国语精品视频| 色在线免费观看| 亚洲第一偷拍| 综合成人在线| 欧美黄污视频| 都市激情亚洲综合| 欧美综合自拍| 在线视频精品| 丝袜亚洲另类欧美综合| 亚洲亚洲免费| 四虎精品在线观看| 天堂va蜜桃一区二区三区| 国产精品xxxav免费视频| 欧美区日韩区| 成人不卡视频| 视频一区欧美日韩| 欧美日韩国产一区二区三区不卡| 国产日韩视频在线| 日韩一级特黄| 性色一区二区三区| 国产综合视频| 国内精品免费| 日本欧美韩国国产| 国产精品久久| 久久精品国产亚洲高清剧情介绍| 日韩综合在线| 日韩一级欧洲| 亚洲成av人片一区二区密柚| 色综合中文网| 捆绑调教一区二区三区| 自拍偷自拍亚洲精品被多人伦好爽 | 国产精品一区二区av交换| 久久亚洲人体| 韩国精品主播一区二区在线观看 | 日本aⅴ免费视频一区二区三区| 涩涩av在线| 免费精品视频在线| 99久久婷婷这里只有精品| 久久爱www.| 综合国产视频| 亚洲一区二区小说| 一区二区电影在线观看| 国产91亚洲精品久久久| 日韩电影一区| 都市激情国产精品| 热久久国产精品| 亚洲欧美日本日韩| 亚洲欧美日韩精品一区二区| 婷婷另类小说| 亚欧美无遮挡hd高清在线视频| 国产一区二区三区网| 国产成人免费视频网站视频社区 | 麻豆国产欧美一区二区三区| 久久99久久久精品欧美| 福利一区视频| 久久国产三级| 另类综合日韩欧美亚洲| 日韩和欧美一区二区| 欧美性www| 91欧美大片| 国产污视频在线播放| 日韩欧美精品综合| 欧美日韩国产v| 78精品国产综合久久香蕉| 福利精品在线| 日本伊人色综合网| 欧美激情1区| 日韩国产在线一| 亚洲有吗中文字幕| 一区二区中文字| 国产探花一区在线观看| 国产精品一在线观看| 亚洲人成伊人成综合图片| 日韩激情网站| 国产成人tv| 国产一区久久| 亚洲欧洲一区二区天堂久久| 亚洲免费在线| 欧美久久天堂| 久久国产麻豆精品| 青青国产精品| 国产精品啊啊啊| 日本中文字幕在线一区| 精品久久视频| 在线视频免费在线观看一区二区| 亚洲视频播放| 裤袜国产欧美精品一区| av久久网站| 欧美激情综合色综合啪啪| 免费在线亚洲| 亚洲免费专区| 99久久夜色精品国产亚洲狼 | 日韩精品乱码av一区二区| 国产精品片aa在线观看| 日产国产高清一区二区三区| 久久久人成影片免费观看| 蘑菇福利视频一区播放| 神马午夜在线视频| 麻豆精品国产91久久久久久| 亚洲精品白浆高清| 国产日韩在线观看视频| 亚洲天堂久久| 无遮挡爽大片在线观看视频| 日韩国产欧美在线观看| 日韩av成人高清| 免费不卡中文字幕在线| 91成人超碰| 校园春色亚洲| 亚洲一区有码| 欧美午夜精彩| 日韩在线观看| 国产免费av一区二区三区| 午夜久久av| 99在线观看免费视频精品观看| 亚洲最新无码中文字幕久久| 老鸭窝一区二区久久精品| 国产精区一区二区| 日韩欧美四区| 亚洲精彩视频| 免费永久网站黄欧美| 精品久久网站| 日本精品不卡| 国产伦精品一区二区三区在线播放| 蜜臂av日日欢夜夜爽一区| 国产一区二区三区探花| 免费人成网站在线观看欧美高清| 综合激情在线| 首页综合国产亚洲丝袜| 国产欧美激情| 免费成人在线影院| 亚洲人成网77777色在线播放| 国产精品女主播一区二区三区| 亚洲综合中文| 久久成人在线| 日本亚洲一区二区| 日韩高清欧美| 精品九九在线| 国产日韩免费| 欧州一区二区| 欧美欧美在线| 中文字幕在线高清| 精品中国亚洲| 亚洲精品色图| 午夜在线一区二区| 蜜桃精品视频| 成人国产网站| 欧美阿v一级看视频| 欧美激情综合色综合啪啪| 蜜臀99久久精品久久久久久软件| 亚洲制服一区| 韩国女主播一区二区| 成人a'v在线播放| 欧美高清hd| 午夜精品成人av| 欧美成人午夜| 国产中文字幕一区二区三区| 日韩欧美高清在线播放| 欧美日韩色图| 在线不卡一区| 日韩精品1区| 激情综合视频| 天海翼亚洲一区二区三区| 欧美日韩精品一区二区三区视频| 欧美一级精品片在线看| 超碰国产精品一区二页| 日韩在线视屏| 在线观看免费一区二区| 亚洲国产欧美日韩在线观看第一区| 免费看男女www网站入口在线 | 国产色综合网| 伊人久久亚洲| 国产精品多人| 日韩在线观看| 亚洲黄页一区| 精品久久精品| 国产精品嫩草影院在线看| 成人国产精品一区二区免费麻豆 | 视频在线观看91| 久久久久久久久丰满| 国产成人三级| 肉丝袜脚交视频一区二区| 免费观看成人av|