加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

BEE1038代做、代寫Python設計程序

時間:2024-03-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久精品亚洲成在人线av网址| 91精品综合久久久久久久久久久 | 国产91精品入| 免费在线播放第一区高清av| 美女被久久久| 日韩精品看片| 婷婷亚洲精品| 日日骚欧美日韩| 国产剧情av在线播放| 91九色精品国产一区二区| 日韩不卡免费视频| 美女免费视频一区二区| 在线观看涩涩| 日韩午夜在线电影| 免费看久久久| 日韩视频一二区| 中文字幕一区二区av| 欧美日韩在线精品一区二区三区激情综合| 亚洲激情五月| 久久精品1区| 亚洲福利合集| 亚洲人metart人体| 日韩黄色av| 一区二区国产在线观看| 91综合网人人| 国产免费成人| 激情久久综合| 狼人精品一区二区三区在线| 日本一道高清一区二区三区| 欧美精品91| 日韩黄色免费电影| 亚洲精品在线影院| 91青青国产在线观看精品| 一区精品久久| 婷婷色综合网| 欧美粗暴jizz性欧美20| 精品不卡一区| 成人自拍在线| 视频国产精品| 日本免费一区二区视频| 欧美日韩123| av日韩一区| 在线高清欧美| 一区二区三区四区电影| 麻豆国产一区二区| 六月丁香婷婷久久| 一区二区三区四区五区在线 | 日本亚洲免费观看| 日韩精品视频在线看| 亚洲另类av| 日韩经典中文字幕一区| 亚洲丝袜美腿一区| 亚洲午夜久久| 午夜欧洲一区| 亚洲视频国产| 亚洲一区二区三区四区电影| 亚洲亚洲一区二区三区| 成人av影音| 精品99在线| 国内亚洲精品| 国产高清欧美| 国产一区二区精品| 首页欧美精品中文字幕| 日韩av有码| 精品成人免费一区二区在线播放| 日韩激情在线| 四虎精品在线观看| 日韩精品亚洲专区| 999精品视频在线观看| 欧美第一在线视频| 日韩大片在线免费观看| 亚洲三级av| 欧美亚洲国产激情| 99久久激情| 黄色精品免费| 日韩av密桃| 视频小说一区二区| 影视先锋久久| a91a精品视频在线观看| 日韩精品一二三区| 日韩成人综合| 欧美成人xxxx| 国产欧美大片| 极品尤物一区| 午夜精品一区二区三区国产| 亚洲专区一区| 成人自拍av| 亚洲三级观看| 日韩av字幕| 久久一区二区三区喷水| 亚洲欧美视频| 国产精品66| 色棕色天天综合网| 免费观看成人www动漫视频| 亚洲一区二区成人| 91综合国产| 国产成人视屏| 久久九九免费| 免费成人美女在线观看| 先锋影音一区二区| 天堂99x99es久久精品免费| 久久久亚洲人| 黄色aa久久| 你懂的国产精品| 开心激情综合| 四虎8848精品成人免费网站| 国产欧美日韩综合一区在线播放 | 丁香五月缴情综合网| 精品三级久久| 日韩中文字幕麻豆| 91成人噜噜噜在线播放| 日韩精品一区二区三区中文在线| 日韩av中文字幕一区二区| 精品国产亚洲日本| 91精品国产成人观看| 午夜久久美女| 中文字幕人成乱码在线观看| 日韩av片子| 中文字幕亚洲精品乱码| 精品亚洲二区| 欧美体内she精视频在线观看| 久久综合影视| 亚洲国产导航| 国产探花一区二区| 国产一区二区三区四区三区四| 久久国产66| 日韩午夜视频在线| 成人精品在线| 日韩精品欧美激情一区二区| 久久福利毛片| 久久久久伊人| 六月丁香婷婷色狠狠久久| 国产一区网站| 免费不卡中文字幕在线| 蜜桃91丨九色丨蝌蚪91桃色| 日一区二区三区| 免费一级欧美片在线观看网站| 亚洲一本视频| 日韩情爱电影在线观看| 一区二区三区午夜视频| 国产一级成人av| 天堂va蜜桃一区二区三区漫画版| 久久精品免费观看| 欧美三级视频| 色综合久久一区二区三区| 日本不卡在线视频| 成人h动漫精品一区二区器材| 99成人在线| 婷婷午夜社区一区| 欧美福利在线播放网址导航| 国产精品久久久久久久久妇女| 亚洲人成免费| 竹菊久久久久久久| 日韩在线观看电影完整版高清免费悬疑悬疑| 亚洲第一二三区| 天堂av在线一区| 亚洲伊人精品酒店| 欧美特黄一级| 日本成人在线电影网| 亚洲啊v在线观看| 日韩av首页| 一区二区三区视频免费视频观看网站| 中文日韩欧美| 国产成人视屏| 久久久水蜜桃av免费网站| 少妇精品视频在线观看| 国产成人视屏| 美女久久99| 亚洲欧美日韩国产一区| 国产欧美亚洲一区| 五月激情综合| 影音先锋亚洲精品| 天天影视欧美综合在线观看| 久久中文字幕一区二区三区| 久久久久久美女精品| 亚洲精品黄色| 欧美日韩视频一区二区三区| 麻豆精品久久久| 伊人精品视频| 精品一区二区三区四区五区 | 亚洲激情社区| 在线成人超碰| 免费日韩一区二区| 日韩二区三区四区| 久久aⅴ乱码一区二区三区| 日韩一区二区三区高清在线观看| 一区二区乱码| 极品尤物一区| 美女一区二区视频| 在线 亚洲欧美在线综合一区| 国产不卡av一区二区| 蜜臀久久久久久久| 免费观看亚洲天堂| 日韩精品电影在线观看| 亚洲一区日韩在线| 精品国产亚洲一区二区三区在线 | 亚洲成人国产| 亚洲天天影视网| 鲁大师影院一区二区三区| 日韩高清电影免费|