加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CEG5301代做、MATLAB編程語言代寫

時間:2024-03-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CEG5301 Machine Learning with Applications:
Part I: Homework #3
Important note: the due date is 17/03/2024. Please submit the softcopy of your report
to the submission folder in CANVAS. Late submission is not allowed unless it is well
justified. Please supply the MATLAB code or Python Code in your answer if computer
experiment is involved.
Please note that the MATLAB toolboxes for RBFN and SOM are not well developed.
Please write your own codes to implement RBFN and SOM instead of using the
MATLAB toolbox.
Q1. Function Approximation with RBFN (10 Marks)
Consider using RBFN to approximate the following function:
𝑦𝑦 = 1.2 sin(𝜋𝜋𝜋𝜋) − cos(2.4𝜋𝜋𝜋𝜋) , 𝑓𝑓𝑓𝑓𝑓𝑓 w**9;w**9; ∈ [−1.6, 1.6]
The training set is constructed by dividing the range [−1.6, 1.6] using a uniform step
length 0.08, while the test set is constructed by dividing the range [−1.6, 1.6] using
a uniform step length 0.01. Assume that the observed outputs in the training set are
corrupted by random noise as follows.
𝑦𝑦(𝑖𝑖) = 1.2 sin 𝜋𝜋𝜋𝜋(𝑖𝑖)  − cos 2.4𝜋𝜋𝜋𝜋(𝑖𝑖)  + 0.3𝑛𝑛(𝑖𝑖)
where the random noise 𝑛𝑛(𝑖𝑖) is Gaussian noise with zero mean and stand deviation of
one, which can be generated by MATLAB command randn. Note that the test set is not
corrupted by noises. Perform the following computer experiments:
a) Use the exact interpolation method (as described on pages 17-26 in the slides of
lecture five) and determine the weights of the RBFN. Assume the RBF is Gaussian
function with standard deviation of 0.1. Evaluate the approximation performance of
the resulting RBFN using the test set.
 (3 Marks)
b) Follow the strategy of “Fixed Centers Selected at Random” (as described on page 38
in the slides of lecture five), randomly select 20 centers among the sampling points.
Determine the weights of the RBFN. Evaluate the approximation performance of the
resulting RBFN using test set. Compare it to the result of part a).
(4 Marks)
c) Use the same centers and widths as those determined in part a) and apply the
regularization method as described on pages 43-46 in the slides for lecture five. Vary
the value of the regularization factor and study its effect on the performance of RBFN.
(3 Marks)
2
Q2. Handwritten Digits Classification using RBFN (20 Marks)
In this task, you will build a handwritten digits classifier using RBFN. The training data
is provided in MNIST_M.mat. Each binary image is of size 28*28. There are 10
classes in MNIST_M.mat; please select two classes according to the last two different
digits of your matric number (e.g. A0642311, choose classes 3 and 1; A1234567,
choose classes 6 and 7). The images in the selected two classes should be assigned the
label “1” for this question’s binary classification task, while images in all the remaining
eight classes should be assigned the label “0”. Make sure you have selected the correct
2 classes for both training and testing. There will be some mark deduction for wrong
classesselected. Please state your handwritten digit classes for both training and testing.
In MATLAB, the following code can be used to load the training and testing data:
-------------------------------------------------------------------------------------------------------
load mnist_m.mat;
% train_data  training data, 784x1000 matrix
% train_classlabel  the labels of the training data, 1x1000 vector
% test_data  test data, 784x250 matrix
% train_classlabel  the labels of the test data, 1x250 vector
-------------------------------------------------------------------------------------------------------
After loading the data, you may view them using the code below:
-------------------------------------------------------------------------------------------------------
tmp=reshape(train_data(:,column_no),28,28);
imshow(tmp);
-------------------------------------------------------------------------------------------------------
To select a few classes for training, you may refer to the following code:
-------------------------------------------------------------------------------------------------------
trainIdx = find(train_classlabel==0 | train_classlabel==1 | train_classlabel==2); % find the
location of classes 0, 1, 2
Train_ClassLabel = train_classlabel(trainIdx);
Train_Data = train_data(:,trainIdx);
-------------------------------------------------------------------------------------------------------
Please use the following code to evaluate:
-------------------------------------------------------------------------------------------------------
TrAcc = zeros(1,1000);
TeAcc = zeros(1,1000);
thr = zeros(1,1000);
TrN = length(TrLabel);
TeN = length(TeLabel);
for i = 1:1000
 t = (max(TrPred)-min(TrPred)) * (i-1)/1000 + min(TrPred);
 thr(i) = t;

TrAcc(i) = (sum(TrLabel(TrPred<t)==0) + sum(TrLabel(TrPred>=t)==1)) / TrN;
TeAcc(i) = (sum(TeLabel(TePred<t)==0) + sum(TeLabel(TePred>=t)==1)) / TeN;
end
3
plot(thr,TrAcc,'.- ',thr,TeAcc,'^-');legend('tr','te');
-------------------------------------------------------------------------------------------------------
TrPred and TePred are determined by TrPred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TrData(: , j)) Ү**;Ү**;
𝑖𝑖=0 and
TePred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TeData(: , j)) Ү**;Ү**;
𝑖𝑖=0 where Ү**;Ү**; is the number of hidden neurons.
TrData and TeData are the training and testing data selected based on your matric
number. TrLabel and TeLabel are the ground-truth label information (Convert to {0,1}
before use!).
You are required to complete the following tasks:
a) Use Exact Interpolation Method and apply regularization. Assume the RBF is
Gaussian function with standard deviation of 100. Firstly, determine the weights of
RBFN without regularization and evaluate its performance; then vary the value of
regularization factor and study its effect on the resulting RBFNs’ performance.
(6 Marks)

b) Follow the strategy of “Fixed Centers Selected at Random” (as described in page 38
of lecture five). Randomly select 100 centers among the training samples. Firstly,
determine the weights of RBFN with widths fixed at an appropriate size and compare
its performance to the result of a); then vary the value of width from 0.1 to 10000 and
study its effect on the resulting RBFNs’ performance.
(8 Marks)

c) Try classical “K-Mean Clustering” (as described in pages 39-40 of lecture five) with
2 centers. Firstly, determine the weights of RBFN and evaluate its performance; then
visualize the obtained centers and compare them to the mean of training images of each
class. State your findings.
(6 Marks)
4
Q3. Self-Organizing Map (SOM) (20 Marks)
a) Write your own code to implement a SOM that maps a **dimensional output layer
of 40 neurons to a “hat” (sinc function). Display the trained weights of each output
neuron as points in a 2D plane, and plot lines to connect every topological adjacent
neurons (e.g. the 2nd neuron is connected to the 1st and 3rd neuron by lines). The training
points sampled from the “hat” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
x = linspace(-pi,pi,400);
trainX = [x; sinc(x)];  2x400 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(3 Marks)
b) Write your own code to implement a SOM that maps a 2-dimensional output layer
of 64 (i.e. 8×8) neurons to a “circle”. Display the trained weights of each output neuron
as a point in the 2D plane, and plot lines to connect every topological adjacent neurons
(e.g. neuron (2,2) is connected to neuron (1,2) (2,3) (3,2) (2,1) by lines). The training
points sampled from the “circle” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
X = randn(800,2);
s2 = sum(X.^2,2);
trainX = (X.*repmat(1*(gammainc(s2/2,1).^(1/2))./sqrt(s2),1,2))';  2x800 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(4 Marks)
c) Write your own code to implement a SOM that clusters and classifies handwritten
digits. The training data is provided in Digits.mat. The dataset consists of images in 5
classes, namely 0 to 4. Each image with the size of 28*28 is reshaped into a vector and
stored in the Digits.mat file. After loading the mat file, you may find the 4 matrix/arrays,
which respectively are train_data, train_classlabel, test_data and test_classlabel. There
are totally 1000 images in the training set and 100 images in the test set. Please omit 2
classes according to the last digit of your matric number with the following rule:
omitted class1 = mod(the last digit, 5), omitted_class2 = mod(the last digit+1, 5). For
example, if your matric number is A06423**, ignore classes mod(7,5)=2 and
mod(8,5)=3; A1234569, ignore classes 4 and 0.
Thus, you need to train a model for a 3-classes classification task. Make sure you have
selected the correct 3 classes for both training and testing. There will be some mark
deduction for wrong classes selected. Please state your handwritten digit classes for
both training and testing.
After loading the data, complete the following tasks:
c-1) Print out corresponding conceptual/semantic map of the trained SOM (as
described in page 24 of lecture six) and visualize the trained weights of each output
neuron on a 10×10 map (a simple way could be to reshape the weights of a neuron
5
into a 28×28 matrix, i.e. dimension of the inputs, and display it as an image). Make
comments on them, if any.
(8 Marks)
c-2) Apply the trained SOM to classify the test images (in test_data). The
classification can be done in the following fashion: input a test image to SOM, and
find out the winner neuron; then label the test image with the winner neuron’s label
(note: labels of all the output neurons have already been determined in c-1).
Calculate the classification accuracy on the whole test set and discuss your
findings.
(5 Marks)
The recommended values of design parameters are:
1. The size of the SOM is 1×40 for a), 8×8 for b), 10×10 for c).
2. The total iteration number N is set to be 500 for a) & b), 1000 for c). Only the
first (self-organizing) phase of learning is used in this experiment.
3. The learning rate 𝜂𝜂(𝑛𝑛) is set as:
𝜂𝜂(𝑛𝑛) = 𝜂𝜂0 exp  − 𝑛𝑛
𝜏𝜏2
  , 𝑛𝑛 = 0,1,2, …
where 𝜂𝜂0 is the initial learning rate and is set to be 0.1, 𝜏𝜏2 is the time constant
and is set to be N.
4. The time-varying neighborhood function is:
ℎ𝑗𝑗,𝑖𝑖(w**9;w**9;)(𝑛𝑛) = exp  − 𝑑𝑑𝑗𝑗,𝑖𝑖
2
2ҵ**;ҵ**;(𝑛𝑛)2  , 𝑛𝑛 = 0,1,2, …
where 𝑑𝑑𝑗𝑗,𝑖𝑖 is the distance between neuron j and winner i, ҵ**;ҵ**;(𝑛𝑛) is the effective
width and satisfies:
ҵ**;ҵ**;(𝑛𝑛) = ҵ**;ҵ**;0 exp  − 𝑛𝑛
𝜏𝜏1
  , 𝑛𝑛 = 0,1,2, …
where ҵ**;ҵ**;0 is the initial effective width and is set according to the size of output
layer’s lattice, 𝜏𝜏1 is the time constant and is chosen as 𝜏𝜏𝑖𝑖 = Ү**;Ү**;
log(ҵ**;ҵ**;0)
.
Again, please feel free to experiment with other design parameters which may be
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP26020、代做c/c++,Java編程設計
  • 下一篇:代寫ACS130、代做C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    免费不卡中文字幕在线| 麻豆成人av在线| 国产主播一区| 久久久精品区| 美女视频网站久久| 噜噜爱69成人精品| 97精品久久| 国产精品1区| 天天综合在线观看| 免费视频久久| 久久国产亚洲精品| 视频二区欧美| 在线免费观看亚洲| 成人在线不卡| 福利在线免费视频| 国产精品日本欧美一区二区三区| 欧美人成在线观看ccc36| 国产成人黄色| 国产精品大片免费观看| 在线观看精品| 在线看片福利| 国产婷婷精品| 蜜臀av免费一区二区三区| 免费观看性欧美大片无片| 91精品福利观看| 国产欧美一区二区色老头 | 日韩成人精品| www.久久久久爱免| 三级久久三级久久| 日韩专区视频| 日本国产一区| 女海盗2成人h版中文字幕| 国产精品毛片一区二区在线看| 精品91久久久久| 黑人操亚洲人| 免费视频一区三区| 久久精品国产大片免费观看| 欧美偷窥清纯综合图区| 国偷自产av一区二区三区| 视频二区欧美| av男人一区| 欧美国产极品| 国内精品免费| 欧美激情网址| 精品国产精品久久一区免费式| 日本一区影院| 99久热这里只有精品视频免费观看| 亚洲v天堂v手机在线| 亚洲精品3区| 日韩av一区二区三区四区| 日本天堂一区| 日韩美女毛片| 一区二区三区在线资源| 高清一区二区三区| 精品国产影院| 亚洲福利专区| 亚洲国产日韩欧美在线| 一区视频在线看| 久久都是精品| 日韩综合在线| 在线视频cao| 亚洲成人va| 99精品视频免费观看| 在线国产欧美| 欧美男gay| 丁香五月缴情综合网| 成人羞羞在线观看网站| 国产99久久精品一区二区300| 欧美一二区在线观看| 精品在线91| 视频一区免费在线观看| 亚洲天堂资源| 久久精品99久久久| 中文成人在线| 日韩一级淫片| 欧美日韩中文字幕一区二区三区| av一区二区高清| 日本大胆欧美人术艺术动态| 最新中文字幕在线播放| 99精品国产福利在线观看免费 | 五月综合久久| 国产suv精品一区| 国精品一区二区| 狂野欧美性猛交xxxx巴西| 五月天av在线| 日本不卡视频在线| 日韩一区网站| 波多野结衣在线观看一区二区三区| 免费看黄裸体一级大秀欧美| 男人久久天堂| 91精品福利观看| 国产精品天天看天天狠| 一本一本久久a久久综合精品| 国产精品麻豆久久| 一区二区三区四区五区在线| 亚洲+变态+欧美+另类+精品| 久久97久久97精品免视看秋霞| 亚洲激情黄色| 日本综合久久| 国产精品一区高清| 欧美日韩在线网站| 蜜臀久久99精品久久久久宅男 | 丝袜脚交一区二区| 日韩一级特黄| 日韩电影一区二区三区| 五月天激情综合网| 日本美女一区| 国产一区二区观看| 一本久久青青| 欧美日韩国产v| 国产一区99| 欧美在线网站| 日韩欧美三区| 69精品国产久热在线观看| 99热免费精品| 日韩成人综合| 偷拍自拍一区| 99热在线精品观看| 一本综合精品| 精品视频免费| 91综合久久| 欧美禁忌电影| 亚洲综合激情| 欧美a一区二区| 成人羞羞视频播放网站| 日韩视频在线观看| 日韩影视在线观看| 亚洲女人av| 国产精品hd| 免费视频国产一区| 成人在线观看免费播放| 爱爱精品视频| 日韩深夜视频| 九九99久久精品在免费线bt| 亚洲一区成人| 欧美啪啪一区| 欧美日韩国产一区精品一区| 日韩精品欧美精品| 伊人成综合网伊人222| 日韩美女在线| 99久久综合狠狠综合久久aⅴ| 夜鲁夜鲁夜鲁视频在线播放| 一区二区三区视频免费视频观看网站| 日av在线不卡| 天美av一区二区三区久久| 蜜桃免费网站一区二区三区| 最新国产一区| 国产精品国产一区| 久久精品九色| xxxxx性欧美特大| 成人免费在线电影网| 日韩不卡免费高清视频| 青青一区二区三区| 国产麻豆一区| 亚洲小说欧美另类社区| 蓝色福利精品导航| 亚洲免费观看| 国产精品亚洲二区| 久久久久久夜| 超碰在线成人| 国产成人久久精品麻豆二区| 久久精品国内一区二区三区水蜜桃| 玖玖精品在线| 精品69视频一区二区三区Q| 国产亚洲一区| 在线最新版中文在线| 欧美一区二区三区久久| 久久精品一区二区国产| 日韩视频在线一区二区三区 | 久久女人天堂| 亚洲激情网址| 日韩精品福利一区二区三区| 女人高潮被爽到呻吟在线观看| 成人羞羞在线观看网站| 日本免费新一区视频| 六月丁香综合| 精品国产aⅴ| 亚洲人成高清| 国产精品原创| 久久精品高清| 国产麻豆精品久久| 婷婷综合六月| 亚洲成人日韩| 日韩中文字幕在线一区| 99精品视频免费观看视频| 亚洲永久字幕| 精品国产午夜肉伦伦影院| 欧美日韩伊人| 欧美成人a交片免费看| 亚洲小说欧美另类社区| 亚洲欧洲av| 亚洲国产二区| 97在线精品| 不卡日本视频| aaa国产精品视频| 欧美区亚洲区| 欧美国产日韩电影| 久久先锋影音| 91精品国产自产拍在线观看蜜| 国产欧美日韩精品一区二区三区|