加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CS 3140代做、代寫java語言編程

時間:2024-03-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 3140 - SDE Spring 2024
HW 3: Apportionment Refactored
1. Getting Started
In Unit III of our course, you learned that code refactoring is like giving your code a makeover.
It's the process of improving the structure, organization, and functionality of your code without
changing its external behavior. Refactoring can not only make your code easier to read,
maintain, and debug, but it can also increase its performance and efficiency. It's a skill that every
developer should master, as it's often the key to unlocking the true potential of their code.
In this assignment, we will revisit and refactor HW**C. You are given an implementation of HW1
written by Prof. Will McBurney, the course's original designer. For reasons of academic
honesty, this implementation code may not be reposted anywhere or shared with anyone.
The assignment is divided into 4 parts:
● Part A - Refactor an Apportionment method
● Part B - Add a new concrete implementer to ApportionmentFormat
● Part C - Designed three classes ApportionmentMethodFactory,
StateSupplierFactory, and RepresentationFormatFactory, to instantiate and
return the correct concrete implementation of the functionality of our software.
1
CS 3140 - SDE Spring 2024
● Part D - Reimplement a new command-line arguments system
You may tackle these parts in any order, though doing Part C before you do Part D is
recommended since the new Arguments implementation should use the Factories created in
Part C.
Note on Piazza: For this and future assignments, we are back to our regular Piazza policies,
meaning it's completely okay (and encouraged) to ask public questions on Piazza about the
specification, starter code, etc.
Team Repository: Teams of up to 3 are allowed. You may have teammates from your previous
team or find new ones. However, you can only work with the same person up to 4 times.
1. Decide if you are working alone or if you are working in a group of up to 3 members. All
team members must have their NetID in the team repository name. In this assignment,
you will add the prefix “Refactor” to your team name. For example, a team of netID1,
netID2, and netID3 must follow this format: “Refactor-netID**netID2-netID3”
2. Click on this GitHub Classroom Invite: https://classroom.github.com/a/fB4JiPvY
and create the git repository you and your team will use. If you miss this step, make a
private "rename repo" request on Piazza.
3. Using IntelliJ, clone the repository to your local computer in the root directory of your
project (by default, named HW3-starter-repo).
2. Program Specifications
This implementation additionally has three extra features, including 2 apportionment methods
that were not in Homework 1:
● AdamsMethod.java, which is used by adding "--adams" to the command line
○ You will rewrite the argument handling in a later part. The implementation will no
longer have the "--adams" flag.
● JeffersonMethod.java, which is used by adding “--jefferson” to the command
line
○ You will rewrite the argument handling in a later part. The implementation will no
longer have the "--jefferson" flag.
● PopulationFormat.java, which can display the apportionment in order of
population (ascending or descending).
As a rule, do not change any existing public or protected class interfaces (that is, do not change
the method declarations, and do not change their behavior) unless explicitly told to do so.
Additionally, do not remove any existing tests except for ArgumentsTest, which you will want
to replace in Part D completely. These tests help ensure you don't "break" any working features
when adding new code. You may add additional tests if they help. However, be aware that we
will run all existing tests except those in ArgumentsTest (as well as new tests) when grading
your code, and you will lose points for any test failures.
2
CS 3140 - SDE Spring 2024
In general, I would expect you only to need to change the following source files:
● Arguments.java (which you will replace completely in part D)
● Any of the classes that you add
● ArgumentsTest.java (which you are encouraged to replace with your tests)
2.1. Part A - Reimplement an Apportionment Method
You will expand some features from Homework 1C in the HuntingtonHill Method. You will
re-design the Huntington-Hill to implement the ApportionmentMethod interface and return a
Representation. You can refer back to HW**C for an example of implementing the
Huntington-Hill Method and reusing any code from Homework 1C from any team member. The
class declaration should be:
public class HuntingtonHillMethod implements ApportionmentMethod {}
This class should not have any constructors! We will instantiate it with an implicit zero-argument
constructor. As part of the ApportionmentMethod interface, the getRepresentation function
should calculate how many representatives each state receives using the Huntington-Hill
algorithm and return an appropriate Representation.
Implementation Note: These methods may not change any code outside their class. Refrain
from modifying how command line arguments are handled (we will discuss that in Parts C and
D). You can reference existing code, but you must not change it! We intend to use
polymorphism to help ensure our new code can be added without changing existing code in
other software parts (though you can re-use code outside of the class, such as
Apportionment).
2.2. Part B - Add a New Feature: Relative Benefit
Since our code now supports a few apportionment methods, we want to add a Relative Benefit
feature to help users compare different apportionment methods. You will learn how to calculate
the relative benefit of an apportionment strategy and format it for display on the console. To do
this, you will implement a new class called RelativeBenefitFormat.
RelativeBenefitFormat
Looking at the table of the Jefferson method with our starting Divisor based on the Total
Population divided by the number of Representatives (described in Appendix A). The
RoundedDown column was replaced with the number of representatives given to the state.
Name Population Raw Final reps Benefit
Delaware 989948 0.808914 0 -0.808914
Maryland 6177224 5.0**58 5 -0.0**58
3
CS 3140 - SDE Spring 2024
Pennsylvania 13002700 10.62486 12 +1.37514
Virginia 8631393 7.052948 7 -0.052948
West Virginia 1793716 1.465695 1 -0.465695
From this table, we can see how much a state benefited from or was hurt by the
apportionment method:
Benefit = [final reps] - [raw]
In this case, we can say Pennsylvania benefitted the most from our use of the Jefferson
Apportionment method (then ended up with nearly 1.4 more reps than you would expect from
their raw number), whereas Delaware was hurt the most (they would expect roughly 0.8 reps -
they got 0). Using this information, here is how your printed format should look:
State | Reps|Benefits
Pennsylvania | 12| +1.375
Maryland | 5| -0.048
Virginia | 7| -0.053
West Virginia | 1| -0.466
Delaware | 0| -0.809
Format Description:
● A header row as shown above
● Vertical bars to indicate columns
● 16 characters left-aligned for state name
● 5 right-aligned for Reps. The number must be an integer
● 7 or 8 characters right-aligned for Benefit.(previously said 7, but example was 8, both ok)
○ the number must have exactly 3 decimal places,
○ + sign must be included for positive benefit values
○ - sign for negative numbers
○ 0.000 should have no sign.
That is, states should be sorted by benefit for the given algorithm. While this example uses the
Jefferson method, this relative benefit should work with ANY apportionment method.
The RelativeBenefitFormat class will also use our divisor. This could involve copying
commonly used code to a library accessible by many classes. Consider again how to approach
making our code D.R.Y. “Don’t Repeat Yourself”, and avoiding copying and pasting code.
The RelativeBenefitFormat should have a private field of type DisplayOrder which determines
the displayOrder class should have two constructors:
● public RelativeBenefitFormat() - defaults the DisplayOrder field to
DESCENDING.
4
CS 3140 - SDE Spring 2024
● public RelativeBenefitFormat(DisplayOrder displayOrder) - directly sets
the DisplayOrder field but throws an IllegalArgumentException if DisplayerOrder is
null.
Do not add any additional constructors.
I recommend looking at PopulationFormat when writing this class, as you should find that it
helps you out considerably, especially with how to handle DisplayOrder.
The interesting part of implementing this is getting each state's quota, since the function is
limited to taking in a Representation object. Be aware that you can calculate the quotas from
the Representation (either by writing the code yourself or re-using the default methods in
ApportionmentMethod.java).
2.3. Part C: Extracting Classes
By now, we should note that the Arguments class violates the Single Responsibility Principle:
"A class should only have one reason to change." Arguments could change because
1. We change the argument format
2. We implement new concrete implementations we want our program to use:
a. New input file format
b. New apportionment algorithm
c. New output String format
This means we have 4 reasons to change. Let's fix that before we start making changes to
Arguments class. You will make 3 Factory classes, each with **3 methods. These classes are
called Factory because they implement a creational design pattern called the Factory Pattern (to
be revealed later in the course). As a hint, all of these methods should be very simple,
basically just if-statements or switch statements that return new instances of the intended class.
The "default" factory methods should just be one-line return statements! If you find that any
method is more than 8 or so lines of code, you need to do something differently!
Factory 1: StateSupplierFactory
● public StateSupplier getStateSupplier(String filename) - Returns a new
StateSupplier (either CSVStateReader or SpreadsheetStateReader) depending on the
ending of the filename. This method will be very similar to the existing getStateSupplier
method in Arguments, but this method takes in the filename directly, rather than
extracting it from the command-line arguments. It should throw an
UnsupportedFileFormatException for invalid filenames.
5
CS 3140 - SDE Spring 2024
Factory 2: ApportionmentMethodFactory
○ public ApportionmentMethod getDefaultApportionmentMethod()-
Returns a new instance of the default apportionment method, HuntingtonHillMethod
○ public ApportionmentMethod getApportionmentMethod(String method)-
Returns a new instance of ApportionmentMethod (JeffersonMethod, AdamsMethod, or
HuntingtonHillMethod). The input string will be the command-line parameter associated
with the --method argument you will implement in Part D. Specifically, the input String
will be either "adams", "jefferson", or "huntington". Any other string input should
result in an IllegalArgumentException with a meaningful error message.
Factory 3: RepresentationFormatFactory
● public RepresentationFormat getDefaultRepresentationFormat() - Returns a
new instance of the default representation format, AlphabeticalFormat
● public RepresentationFormat getRepresentationFormat(String name) -
Returns a new instance of implementation of RepresentationFormat
(AlphabeticalFormat, RelativeBenefitFormat, or PopulationFormat). The input string will
be the command-line parameter associated with the --format argument that you will
implement in Part D. Specifically, the input String will be either "alpha", "benefit", or
"population". For benefit and population, use their default displayOrder (descending
and ascending respectively). Any other string input should result in an
IllegalArgumentException with a meaningful error message.
● public RepresentationFormat getRepresentationFormat(String name,
DisplayOrder order) - Does the same thing as getRepresentationFormat(String),
but allows the DisplayOrder to be specified (note that for AlphabeticalFormat, the
display order should be ignored.
Do not add any constructors to these Factories! All instantiation should be done using the
implicit zero argument constructor that all classes without an explicit constructor have.
Additionally, the classes shouldn't have any instance variables, though you are welcome to use
static constants. (public static final [type] [variable name])
Example Factory usage: If working correctly, then your usage of a given Factory will look
something like this:
StateSupplierFactory factory = new StateSupplierFactory();
StateSupplier supplier = factory.getStateSupplier(filename);
In this case, if the filename is a .csv file, the supplier will be an instance of CSVStateReader. If
the filename is an .xls or .xlsx file, the supplier will be an instance of SpreadsheetStateReader.
6
CS 3140 - SDE Spring 2024
2.4. Part D - Arguments rewrite
Note: You should implement Part C before attempting to implement this part.
Now that we have extracted the factories, we can re-implement Arguments based on the new
specification for handling requirements and ensure our project is scalable.
Tips: I recommend starting by deleting all of the implementations of all methods in
Arguments.java, but leaving the method declarations. You should also delete/comment
out all of the previous tests in ArgumentsTest.java, as those tests are incompatible with
the format of the new argument.
We can re-implement Arguments based on the new specification for handling requirements.
Arguments will still handle the same basic tasks:
● Take in the String[] args from Main via the Constructor.
● Providing the methods:
○ public StateSupplier getStateSupplier()
○ public int getRepresentatives()
○ public ApportionmentMethod getApportionmentMethod()
○ public RepresentationFormat getRepresentationFormat()
○ (these methods must still be present! - no interface change!)
However, rather than Arguments selecting which concrete implementers to use for
Configuration, it simply interacts with the Factories we wrote in Part C to do so. We are setting
up a framework for having a more customizable approach. So we're going to reset our
command-line arguments. We will still require one argument:
java -jar Apportionment.jar filename
Where filename is the name of the census population file (such as census2020.csv) - this
needs to accept both .csv and .xlsx files. From there, we want all our other arguments done in a
way that many modern programs handle optional arguments: … with flags!
Long Flag arguments
For simplicity, you can assume everything is case sensitive - we will only test your arguments
with lowercase letters.
java -jar Apportionment.jar census2020.xlsx --reps 1000 --format benefit
--algorithm jefferson
In this example, we have three optional arguments defined:
● --reps 1000 - run apportionment with 1000 representatives
● --format benefit - print results using RelativeBenefitFormat
● --algorithm jefferson - use JeffersonMethod
7
CS 3140 - SDE Spring 2024
In this case, the flag specifies the name of the argument, and the next argument specifies the
value of the argument. It's important that the optional arguments can be in any order, but
the argument must follow the flag directly. For example, the following is also a valid command.
java -jar Apportionment.jar census2020.xlsx --algorithm jefferson --reps 1000
List of optional arguments: This lists all optional arguments.
● --reps [integer] - must be followed by a positive (non-zero, non-negative) integer.
Throw a meaningful exception if the input is invalid.
○ Defaults to --reps 435
● --format formatName - set the format name. Format choices:
○ --format alpha - print States (AlphabeticalApportionmentFormat)
○ This is the default value
○ --format benefit - prints States by benefit (RelativeBenefitFormat)
○ --format population - prints States by population (PopulationFormat)
○ Anything else is invalid, a meaningful exception should be thrown
● --algorithm strategyName - set the Apportionment method
○ --algorithm adams - use Adams Apportionment algorithm
○ --algorithm jefferson - use Jefferson Apportionment algorithm
○ --algorithm huntington - use Huntington-Hill Apportionment algorithm
○ This is the default value
Short Flag arguments:
Short flags work largely the same way as long flags. For instance, long flag arguments:
java -jar Apportionment.jar census2020.xlsx --reps 1000 --format benefit
--algorithm jefferson
Could also be written as a short flag form:
java -jar Apportionment.jar census2020.xlsx -r 1000 -f benefit -a jefferson
That is:
● -r is short for --reps
● -f is short for --format
● -a is short for --algorithm
However, unlike long flags, short flags can be combined. For example,
java -jar Apportionment.jar census2020.xlsx -rfa 1000 benefit jefferson
Specifically, -rfa means that:
● The next argument (1000) is -r (--reps)
8
CS 3140 - SDE Spring 2024
● The argument after that (benefit) is -f (--format)
● And the argument after that (jefferson) is -a (--algorithm)
Just like long flags, these can go in any order, and only include some arguments:
java -jar Apportionment.jar census2020.xlsx -af jefferson alpha
The above means:
● Use the Jefferson Apportionment algorithm
● Print states alphabetically
● Use 435 reps (default)
A few words of encouragement: If you have followed the instructions and implemented the
code to the end of this part, congratulations! You have written a pretty complex piece of software
with several long and short flag arguments! This is no small feat, as it demonstrates a mastery
of functional and clean code design. I hope you take pride in what you have accomplished.
Keep up the awesome work, and continue to push yourselves to new heights in your future
projects!
3. Submission and Grading
Ensure all work has been merged to the main branch, then submit, as usual, answer the
questions on the Questions.md.
The coding portion of this assignment will be graded solely based on correct functionality, like
Homework 1 and 2. While we encourage practicing good style and testing (as they will likely
make developing the homework more efficient), we will not be grading anything other than the
functionality for the coding portion. Make sure your class and method names match this
document - we will use automated testing during this assignment to ensure efficient grading.
You should try to make your code DRY, but you will not be graded.
Functionality: We are only grading how correctly your code functions:
● Team Declaration: 5%
● Code Submission
○ Part A - 20%
○ Part B - 20%
○ Part C - 15%
○ Part D - 25%
● Submission and Reflection Questions - 20% (including 5% for Team Declaration)
○ 10% for answering the questions in Questions.md
○ 5% for filling out the Github information and setting up repo correctly
9
CS 3140 - SDE Spring 2024
4. Frequently Asked Questions
Q: Can I add code my team implemented in HW**C?
A: Yes, you may add code that your team developed from HW**C
Q: How do we access methods from an Apportionment if they are private?
A: You are welcome to **increase** the visibility level of any method (i.e., any private method
can be made protected or public, and any protected method can be made public).
Q: If a flag is syntactically incorrect/invalid ("-reps", "reps", or "--numreps") or if some
flag is missing, should we throw an error or should we allow the program to continue
running with the default configurations?
A: Any invalid flags or arguments not attached to flags should throw an error.
Q: Can I change the Method Signatures of Factory Classes?
A: No, you must adhere to the specification as given, only because it will make the grading job
more accessible if they can just use the automated test which relies upon a specific interface.
Q: May we use an external library to implement Arguments?
A: Yes. This is acceptable and in my view an intelligent thing to do. If you find the wheel that
works perfectly well, you don't need to invent a new one. Just make sure you do a proper import
through Gradle Dependencies.
Appendix A - Jefferson Apportionment Method
In this assignment, we will extend the pool of Apportionment methods with a new algorithm:
Jefferson Apportionment Method. As in Homework 1 with Hamilton and Huntington-Hill, we will
quickly illustrate the Jefferson Apportionment Method starting with these five states. For the first
few steps, this will look a lot like Hamilton. This Youtube video on Apportionment describes the
Jefferson Apportionment algorithm starting at the 13-minute mark.
In this example, we will be using 25 representatives once again.
Name Population
Delaware 989948
Maryland 6177224
Pennsylvania 13002700
Virginia 8631393
10
CS 3140 - SDE Spring 2024
West Virginia 1793716
Like with the Hamilton Method from HW**A/B, we are going to get the total population
(30,594,981) and divide by our number of representatives (25) to get our divisor (roughly
1,223,799.24). And just like in Hamilton, we will divide every state by the divisor (Raw, in the
table below) and then Round all states DOWN (RoundedDown in the table below.)
Name Population Raw Rounded Down
Delaware 989948 0.808914 0
Maryland 6177224 5.0**58 5
Pennsylvania 13002700 10.62486 10
Virginia 8631393 7.052948 7
West Virginia 1793716 1.465695 1
Now, if we were to allocate reps equal to the number rounded down, we would be allocating 23
representatives, which is two fewer than we should.
This is the part where we break away from Hamilton. In the Jefferson method, rather than
dealing with remainders, we instead change the divisor. That is, we start decreasing the value
of our divisor until we have allocated all 25 representatives.
So, for instance, if we change our divisor to 1.1 million (1,100,000), then our table becomes:
Name Population Raw Rounded Down
Delaware 989948 0.899953 0
Maryland 6177224 5.615658 5
Pennsylvania 13002700 11.82064 11
Virginia 8631393 7.846721 7
West Virginia 1793716 1.630651 1
We've allocated 24 representatives, but we are still short of 25. If we drop our divisor to 1
million (1,000,000), however, then we end up allocating too many representatives:
11
CS 3140 - SDE Spring 2024
Name Population Raw Rounded Down
Delaware 989948 0.989948 0
Maryland 6177224 6.177224 6
Pennsylvania 13002700 13.0027 13
Virginia 8631393 8.631393 8
West Virginia 1793716 1.793716 1
So that means 1 million is too small. I then tried 1.08 million (1,080,000) and got 25:
Name Population Raw Rounded Down
Delaware 989948 0.916619 0
Maryland 6177224 5.719652 5
Pennsylvania 13002700 12.03954 12
Virginia 8631393 7.992031 7
West Virginia 1793716 1.660848 1
Since we now have 25 representatives allocated, we stop here and accept this number. Yes,
this leaves Delaware without representation, but for the sake of simplicity, you should not try to
enforce "every state gets at least one representative" here. This would be the correct
Apportionment for this input.
Fun fact: In 1992, if Congress had been apportioned by the Jefferson method, Al Gore would
have won the 2000 Presidential Election even if no votes were changed. This is because
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:159.352代做、代寫Python設計程序
  • 下一篇:代寫COMP9315、代做SQL編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    极品av少妇一区二区| 宅男噜噜噜66国产精品免费| 日韩精品水蜜桃| 综合国产在线| av高清不卡| 希岛爱理一区二区三区| 日韩精品亚洲aⅴ在线影院| 欧美日韩精品免费观看视欧美高清免费大片 | 麻豆国产精品一区二区三区| 视频一区在线视频| 久久精品高清| 久久久精品区| 中文字幕免费一区二区三区| 福利在线免费视频| 狠狠综合久久| 久久精品亚洲欧美日韩精品中文字幕| 国产欧美日韩精品一区二区免费| 四虎地址8848精品| 国产极品在线观看| 日韩视频一区| 欧美午夜精彩| 亚洲一二av| 国产永久精品大片wwwapp| 国产精品主播| 日本中文字幕一区二区| 欧美va久久久噜噜噜久久| 亚洲免费观看| 国产综合亚洲精品一区二| 久久久久久亚洲精品美女 | 国产欧美精品| 日本美女一区二区三区视频| 99精品国自产在线| 日本一二区不卡| 在线综合亚洲| 亚洲精品午夜av福利久久蜜桃| 成人毛片在线| 国内精品麻豆美女在线播放视频 | 99久久这里有精品| 日本在线不卡一区| 久久精品国产一区二区| 偷拍中文亚洲欧美动漫| 日本激情一区| 蜜臀av性久久久久蜜臀av麻豆| 午夜精品视频| 午夜国产欧美理论在线播放| 女厕嘘嘘一区二区在线播放| 欧美色婷婷久久99精品红桃| 久久性感美女视频| 婷婷成人综合| 伊人春色精品| 激情综合网站| 91精品动漫在线观看| 精品日本12videosex| 欧美1区免费| 五月天激情综合网| 午夜精品视频| 国产精品美女久久久| 亚洲综合精品| 91视频综合| www.youjizz.com在线| 国产精品麻豆久久| 国产盗摄——sm在线视频| 欧美国产一级| 日韩美女一区二区三区在线观看| 亚洲啊v在线| 亚洲黑人在线| 国产欧美日韩亚洲一区二区三区| 国产激情久久| 亚洲情侣在线| 欧美专区视频| 精品国产18久久久久久二百| 都市激情亚洲欧美| 亚洲特色特黄| 国产麻豆综合| 91影院成人| 99久久婷婷国产综合精品首页| 日韩高清在线不卡| 白嫩亚洲一区二区三区| 日韩一二三区| 欧美日韩中文一区二区| 国产精品嫩草99av在线| 国产盗摄——sm在线视频| 日韩三区免费| 国内揄拍国内精品久久| 亚洲va久久久噜噜噜久久| 国产精品jk白丝蜜臀av小说| 欧美99久久| 色135综合网| 国产欧美日韩亚洲一区二区三区| 亚洲在线资源| 91精品尤物| 波多野结衣的一区二区三区| 免费精品视频在线| 51一区二区三区| 亚洲网站三级| 久久91在线| 免费在线成人网| 欧美在线三级| 久久在线观看| 亚洲国产一成人久久精品| 视频在线不卡免费观看| 免费在线亚洲欧美| 日韩激情精品| 亚洲激情中文| 三上悠亚一区二区| 亚洲综合小说| 啪啪国产精品| av资源在线播放| 欧美日韩亚洲一区| 爱爱精品视频| 免费看亚洲片| 国产精品久久久久9999高清| 日韩不卡在线观看日韩不卡视频| 蜜臀av免费一区二区三区| 黄色在线观看www| 中文字幕一区二区三区在线视频| 精品三级av| 丝袜美腿一区二区三区| 久久精品一区二区国产| 97视频一区| 四季av一区二区三区免费观看 | 色婷婷色综合| www999久久| 91成人精品视频| 久久69成人| 欧美激情99| 狠狠躁少妇一区二区三区| 91精品福利观看| 激情文学一区| 国产精品传媒麻豆hd| 天堂av一区| 国产高潮在线| 国产探花在线精品一区二区| 午夜视频一区| 欧美亚洲免费| 99免费精品| 97成人超碰| 久久国产精品免费精品3p| segui88久久综合9999| 亚洲人和日本人hd| 美女国产一区| 国产欧美高清| 免费成人av资源网| 国产精品亚洲综合在线观看| 亚洲免费高清| 国产亚洲字幕| 老司机精品久久| 亚洲精品亚洲人成在线| 香蕉国产精品偷在线观看不卡| 欧美区日韩区| 红桃视频欧美| 国产一区二区三区视频在线| 亚洲欧美卡通另类91av| 国产精品igao视频网网址不卡日韩| 亚洲激情av| 国产最新精品| 不卡一二三区| 欧美视频久久| 免费日韩成人| 国产一区二区三区四区老人| 麻豆久久一区二区| 亚洲精品一二三区区别| 国产精品视频一区二区三区综合 | 一区二区三区日本视频| 国产精品日韩欧美一区| 亚洲第一福利社区| 欧美成人精品一区二区男人小说| 北条麻妃在线一区二区免费播放| 九九精品调教| 激情欧美日韩一区| 国产精品一区二区三区av| 蜜臀久久99精品久久久画质超高清| 天美av一区二区三区久久| 爱搞国产精品| 亚洲成人精品| 欧美精品国产| 国产农村妇女精品一区二区| 欧美一级二级视频| 欧美激情四色| 欧美h版在线| 久久久久中文| 欧美区亚洲区| 樱花草涩涩www在线播放| 久久久亚洲人| 亚洲最新av| av综合电影网站| 激情久久中文字幕| 亚洲都市激情| 成人在线视频免费| 亚洲欧美bt| 荡女精品导航| 亚洲区综合中文字幕日日| 91青青国产在线观看精品| 91精品精品| 日韩av资源网| 日一区二区三区| 麻豆视频在线观看免费网站黄| 91精品国产成人观看| 国产欧美高清| 国产日韩欧美在线播放不卡|